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Chapter 1

Introduction

1.1 History

In 1976, John Chambers and his colleagues (Bell Laboratories) began to develop a pro-
gramming languages called S. The new language should provide the possibility to program
with data. Since then, S has been improved continuously.

The S language has been implemented in several ways. The commercial version, S-Plus,
has been commonly used for data analysis by scientists.

Ross Ihaka and Robert Gentleman (University of Auckland, New Zealand) started work-
ing on an open source implementation that is similar to S. It is called – referring to the
initial letters of their Christian names – R. R (R Development Core Team, 2004a) is
covered by the GNU General Public License (Stallman, 1991). That means, access to R
as program and source code is free for public, respecting certain conditions1. Based on
this license, R is permanently improved by a worldwide community. Today, it represents
a powerful system that meets the requirements of scientists in Horticulture, Biology and
Agriculture on statistics very well. In comparison to S-Plus, there are no license fees to
be paid.

1.2 Bachelor Thesis Problem

The topic of my thesis is called Writing of an R-Manual for Biometry. This issue has
been announced because there exists a demand for a manual considering the special needs
of horticultural scientists, biologists and agricultural engineers. Many of the hitherto
existing books about R (e.g. Introductory Statistics with R (Dalgaard, 2002)) are very
good guidelines showing the functions of basic statistics on general examples. But those
examples might be too abstract for a student of horticulture or plant biotechnology. Some
functions that are very interesting with regard to field experiments, e.g. for multiple
comparison tests, are still missing in most books.

This manual is adapted to the standard of knowledge of an undergraduate student in a
biological sciences. Ideally, a lecture in basic statistics should go along with studying this
book. Many horticultural and agricultural examples demonstrate the usage of different
R functions in scientific practice.

1§1 You may copy and distribute verbatim copies of the Program’s source code as you receive it, in
any medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to
the absence of any warranty; and give any other recipients of the Program a copy of this License along
with the Program.
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1.3. REASONS TO USE R CHAPTER 1. INTRODUCTION

1.3 Reasons to Use R

In comparison to S-Plus, R is for free and powerful in almost the same manner. Big
parts of source code written in S-Plus are running on R without any problems. But
an undergraduate student of Horticulture might not know S-Plus at all. The typical
undergraduate in Plant Sciences is rather used to the Microsoft Office Suite, asking why
he should not evaluate his experiments with Excel. There are a number of reasons to
move on:

• R does not represent itself with an intuitive graphical surface and is furthermore
command line oriented. On the other hand, this gives full control of the actions
to the user. All parameters can be set individually and the provided help system
assists in keeping a good overview about existing parameters.

• An R test output is far more advanced and comprehensive than the result of any
Office Program. Confidence intervals, quantiles et cetera are usually automatically
calculated along with p-value, degrees of freedom and many other values.

• In comparison to Office Programs, R is more powerful regarding huge data sets and
complicated commands (e.g. nested functions).

• The knowledge of mathematical formulas for statistical procedures is not an imper-
ative necessity for the evaluation of data with R.

• R is an object oriented programming language. This has many advantages. It is e.g.
possible to produce a graph with confidence intervals of an object containing the
test output of simint() using the single, short command plot(object.simint).

• R is platform independent. It may be used on Unix, Linux, Windows and MacOS.
GUI refers to
Graphical User
Interface.• The usage of R is not more complicated than the usage of a GUI based program.

Commands are typed into the command line but the command structure is logical
and therefore easy to learn.

• Another advantage is the integration into the text markup language LaTeX by
the Sweave tools. LaTeX is increasingly popular among scientists due to its clear
structure. Together, LaTeX and R are offering a working platform that contains all
tools for evaluation and publication of scientific experiments (Gentleman, 2005).

• R is able to import Microsoft Excel data sheets (RODBC package). The package
foreign is additionally supporting the usage of data created by S, SAS, SPSS,
Stata et cetera.

These arguments shall convince students to start working with R.

1.4 Download and Installation

Packages prepared for installation are provided for the operating systems Linux, Windows
and Mac OS. References for the self compilation of source code and the installation
on Unix, Windows and Mac OS are given in R Installation and Administration (R
Development Core Team, 2004b).

3



1.4. DOWNLOAD AND INSTALLATION CHAPTER 1. INTRODUCTION

Figure 1.1: Selection of a closely located mirror with CRAN.

1.4.1 Download

R is available at CRAN (Comprehensive R Archive Network) on the website http://www.R-
project.org. In order to minimise the transfer time, a closely located Mirror should be
selected (figure 1.1). Download the newest version of the base package for your respec-

If you are not famil-
iar with the instal-
lation of programs,
please remember the
directory where you
save the *.exe or
*.rpm package!

tive operating system (an *.exe file for Windows or an *.rpm package for rpm supporting
Linux systems) in a directory on your local computer.

1.4.2 Installation on Windows

The installation will be started by a double click on the downloaded *.exe file. The
Installation Wizard will ask for the target directory of the installation. The next step is
the selection of R components (Figure 1.2). During the further commencing installation,
it will be asked in which folder of the start menu an R icon shall be created, which registry
entrances shall be written and if a desktop icon is wished. Take a configuration of your
choice and click on Next >, finally. R is now being installed on your computer.

Console means the
command line inside
the running program
R.Subsequently, the program can be called by a click on the desktop icon, the link in the

start menu or with a double click on the file R/bin/Rgui.exe. End R either by File
submenu Exit or by typing q() in the R console.

1.4.2.1 Installation of Add-on Packages

The R base system does not include all packages. I recommend the installation of
pastecs, exactRankTests, multcomp, mvtnorm, car, Rodbc, Biobase (Linux only, avail-
able at http://www.bioconductor.org/repository/release1.5/package/html/index.html) and
multtest to solve all problems given in this book.

4
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1.4. DOWNLOAD AND INSTALLATION CHAPTER 1. INTRODUCTION

Figure 1.2: Selection of R components on Windows. The standard configuration should
be convenient for most users.

An internet connection is required for the installation of add-ons. You can start the
installation process by clicking on the subentry Install package(s) from CRAN... in
the Packages menu (Figure 1.3). A popup windows opens, presenting a list of available

The Command
Line (terminal win-
dow) is the Shell
on Linux. It is a
terminal program
for executing com-
mands. In most of
the cases, you will
find it as a Shell-icon
on your graphical
surface.

packages. Select the package of your choice and confirm with OK. The respective archive
will be downloaded, unpacked and installed automatically. Afterwards, R asks the fol-
lowing question: Delete downloaded files (y/N)?. You can delete them with y (yes)
because those files are only the sources for the preliminarily accomplished installation.

For usage of an add-on, you have to load it with the command library(package name)

into your running R-system.

1.4.3 Installation on Linux

It is necessary to be logged in as root2 for the R installation on Linux. On Suse-Linux,
a click on the *.rpm packages in the Conquerer starts a simple GUI based installation
with Yast.

If your Linux-Distribution does not contain a graphical installation manager, you may

A Distribution is a
Linux version pub-
lished by a company
or a private associ-
ation. A distribu-
tor is usually selling
some kind of service
and not the program
itself which is open
source and covered
by the GNU Public
License, anyway.

install R by typing the following command in the Shell:

rpm -ih /path/to/package/packagename

After a successful installation, R can be called in the terminal window (Shell) by typing R.
Typing q() in the R-Console (= terminal window while R is running) stops the program.

2If you install your package via a GUI, the root password will be requested automatically. Using the
Shell, you have to change user with the command su root manually.

5
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Figure 1.3: Installation of add-on packages with CRAN on Windows.

The R base package does presently not contain an error free running GUI. The package
gnomeGUI promises to be a new R-Console for GNOME if the appropriate GNOME
libraries are installed. However, I was not able to install this package myself (possibly
due to an old GNOME system).

1.4.3.1 Installation of Add-ons

As mentioned in section 1.4.2.1, the R base installation does not contain all packages.
Add-on packages can be installed easily by using the command line (change user to root
is necessary).

After downloading the appropriate package from CRAN manually, type the following
command in the Shell (not into the R-Console!) (R Development Core Team, 2004b):

R CMD INSTALL -l /path/to/library /path/to/packagename.tar.gz

The path to library depends on your system. On Suse-Linux, it is:

/usr/lib/R/library

It is possible to leave out the path to the package if you are already inside the correct
directory3. Indicating the full name of the package is sufficient, then.

There is also the possibility of an installation through the R-Console if the computer is
actively connected to internet. Therefore, first set the option CRAN as follows:

> options(CRAN = "http://cran.us.r-project.org")

3Change directory with cd /path/to/downloaded/package/

6
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The command

> install.packages(packagename)

installs the appropriate package, afterwards (R Development Core Team, 2004b).

Remember to include the add-on with library(package.name) before usage.

1.4.4 Documentation and Help System

Entering help.start() in the R-Console will open a Browser window on Linux, pre-
senting different manuals and documentations. On Windows, the help pages are opening
within the GUI. Handbooks are usually included in the R installation. If they are missing
because you excluded them during a user defined installation, an active internet connec-
tion will be required.

The command ?function() or help(function) calls for the help of individual functions.

On Linux, most help pages are opening within the terminal window. You navigate there
with the arrow keys and return to the R command line by typing q.

If you do not know the name of the function you are looking for, try searching for a
related word:

help.search("search.item")

It is possible to call examples for a certain function with example(function). The simple
entry of a function name will search for this function and return if it exists on the current
system.

1.4.5 Editors

A text editor is a computer program for entering, processing and saving plain text. It is
reasonable to use an editor while working with R if you want to recall certain preliminarily
used functions after a longer period of time without complications.

For the usage of the standard Windows editor or another simple editor, you have to open
the editor as well as R and arrange them somehow parallel on the screen. Type your
commands into the editor first and copy & paste them into R. Finishing your session,
remember to save the editor document as a .txt file somewhere (remember the directory
and file name!).

There are many more advanced editors available. Those are able to do much more
than only plain text editing. On Windows, WinEdt turned out to be a useful R editor
(available at http://www.winedt.com). It can be adjusted in a way that you only have to
press a button to hand marked source code over to the R machine. Emacs (available at
emacs) combined with ESS (Emacs Speaks Statistics, available at http://ess.r-project.org
is offering a similar service which is even platform independent. Both editors provide the
user with a colorful highlighting for the source code.

1.5 Basics

This section has been written following the tutorial script for Biometry 1 (Froemke, 2004).
A full understanding of the terminology is not required after first reading. Nevertheless,
later chapters are built on the content of this section and it might help you to flip back
for certain parts.

7
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1.5.1 Handling of the Command Line

Commands are always typed after > in the R command line. A command is verified
by pressing the ENTER or RETURN key. R is calculating the input and gives an
output if available. The arrow keys ↑ and ↓ provide a navigation through previously
used commands. POS1 sets the cursor to the beginning of a line, END sets the cursor
the end of a line.

Comments are used
to explain the source
code for other people
and yourself. Com-
ments will be ignored
during compilation.

Comments are marked with Hash (#).

Blanks are usually ignored. 4 + 7 has the same meaning for R as 4+7. However,
blanks are not allowed to be used inside a command: x <- 3 ⇒ three is alloted to x,
but with a blank within the < and - it is getting the meaning ” x is smaller than -3?”.

Line breaks. If a command is overlapping a single line, + will indicate that the same
command is continued in the next line. This character does not have to be typed! If
a command is not complete, there will also show up a + in the next line. You have
the possibility to complete your command after this sign. In many cases, brackets are
missing.

1.5.2 Pocket Calculator, Objects and Functions

R can be used as a simple pocket calculator for addition, subtraction, multiplication and
division. Also logarithms et cetera are calculated easily:

> 4+7

[1] 11

> log(2)

[1] 0.6931472

> exp(0.6931472)

[1] 2

Attention! log()

is calculating the
natural logarithm,
not the logarithm to
the base 10!> 30/6 # Take care with division. Double dots will lead to the output of

all natural numbers from 30 to 6.

[1] 5

> log(-1)

[1] NaN

Warning message:

NaNs produced in: log(x)

8
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NaN stands for ”not a number”. Missing values are indicated by NA (not available).

R is writing the result into a vector (see section 1.5.4.1), that is containing only one
single element at the position [1] in the above mentioned examples. But you can also get
a vector with many elements by calling the natural numbers from 30 to 6:

> 30:6

[1] 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

+ 7 6

A vector can be saved into an object by using the <- command. An object is recalled by
its name and it might be used in other calculations and functions directly:

> a<-89

> b<-45

> result<-(a+b)^2

> result

[1] 17956

Objects will be overwritten without any warning. A definite name avoids this to a certain
extent, e.g. binom.formula.of.a.b instead of result. Even functions can be overwritten
with object names easily. The safest method is therefore to enter the name of interest
into the R-Console. If there is a function with this name existing, it will be returned.
Some more hints for choosing an appropriate object name:

• Object names are not allowed to begin with a number and it is not recommended
to start with a dot,

• dot (.) and underline ( ) are permitted but other special characters as e.g. ˜, @, !,
#, %, ˆ, & are not allowed,

• upper and lower cases have to be considered.

Objects are processed by functions. A function consists of its unique name and the

A function is the
implementation of a
method, it gives a re-
sult value.

following parentheses which can include different arguments. The function objects()

for example lists all existing objects. The argument pattern can specify a selection
criterion, which means that

> objects(pattern="example")

prints only those objects which contain the character example in their name. You can
get more information about the function objects() by typing ?objects().

Section 1.4.4 gives instruction for the R help system.

The function rm() deletes objects.

1.5.3 Data Types

Objects in R can contain different types of data. Important for the examples given in
this manual are the following types:

Numeric: Numbers. You can only calculate with numeric objects.

9
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Character: Character strings are commonly used for group and variable names.

Logical: has the two values, TRUE and FALSE. Requests often have a logical output:

> a <- 23

> b <- "Keine Zahl"

> is.numeric(a)

[1] TRUE

> is.numeric(b)

[1] FALSE

Factor: Categorical data, e.g. traffic lights in the colors red, orange and green. The
value of a factor is named level. Factors can be generated from numerical and character
objects. In the following example, a vector is transformed into a factor. Calling the
factor, content and levels are printed. It is also possible to get the levels printed by the
function levels() .

> traffic.lights.vector <- c("green", "red", "green", "yellow", "yellow")

> traffic.lights.factor <- factor(x=traffic.lights.vector)

> traffic.lights.factor

[1] green red green yellow yellow

Levels: green red yellow

> levels(traffic.lights.factor)

[1] "green" "red" "yellow"

The levels occur in alphabetical order. Nevertheless, it is of importance for certain
statistical procedures to sort them by another criterion. A new order can be given with:

> affection.factor <- factor(c("none","few","too many", "few", "many",

+ "too many"))

> sorted.affection.factor <- ordered(x=affection.factor,

+ levels=c("none","few","many","too many"))

> sorted.affection.factor

[1] none few too many few many too many

Levels: none < few < many < too many

1.5.4 Data Input and Output

Data might be saved in the following structures in R: vector, matrix, list and data frame.
An R output occurs on calling the object or as result of a function (usually a list).

10
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1.5.4.1 Vector

Vectors are a one dimensional data structures containing only one data type, e.g. numeric
or character. Vectors with only one element can be created by simple allocation (see
section 1.5.2):

> vec.1 <- "cucumber"

> vec.1

[1] "cucumber"

To create a vector containing more than one element, the function c() concatenates
several elements. (c() can also concatenate only one single element, of course.)

> vec.2 <- c(2,3,4,5,6,3.4)

> vec.2

[1] 2.0 3.0 4.0 5.0 6.0 3.4

> vec.3 <- c("cauliflower", "cucumber", "tomato")

> vec.3

[1] "cauliflower" "cucumber" "tomato"

If different data types are posed in one vector, R will convert them all into a common
type. In this example, R is changing all numerical entries into characters as soon as a
single entry with the type character occurs:

> vec.4 <- c(1:4,10.5,"flower")

> vec.4

[1] "1" "2" "3" "4" "10.5" "flower"

seq() generates sequences at constant intervals:

> vec.5 <- seq(from =1, to =5, by = 0.5)

> vec.5

[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

rep() repeats elements in vectors and lists:

> vec.6 <- rep(x=c("A","B","C"), times = 3)

> vec.6

[1] "A" "B" "C" "A" "B" "C" "A" "B" "C"

> vec.7 <- rep(x=c("A","B","C"), each = 3)

> vec.7

[1] "A" "A" "A" "B" "B" "B" "C" "C" "C"

11
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It is possible to name vector elements. It is important that the number of names is equal
to the number of elements:

> vec.8 <- seq(from=1,to=9,by=2)

> vec.8

[1] 1 3 5 7 9

> names(x=vec.8)<-c("a","b","c","d","e")

> vec.8

a b c d e

1 3 5 7 9

length() and mode() return the length and mode of vectors, matrixes, lists and data
frames. The function sort() sorts a vector by size or alphabetically. Acceding is the
default value but the argument decreasing = TRUE inverts the order.

1.5.4.2 Matrix

In contrast to a vector, a matrix has two dimensions. However, it can still only contain
one data type per matrix. A matrix is created with the functions cbind() (column
bind), rbind() (row bind) or matrix(). The arguments ncol or rather nrow indicate
the column/row numbers for the function matrix (data are always entered horizontally
into the matrix):

> mat.1 <- cbind(1:3, c(4,3,6))

> mat.1

[,1] [,2]

[1,] 1 4

[2,] 2 3

[3,] 3 6

> mat.2 <- rbind(1:3, c(4,3,6))

> mat.2

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 3 6

> mat.3 <- matrix(data=c("A","B","C","D","E","F"), nrow=3)

> mat.3

[,1] [,2]

[1,] "A" "D"

[2,] "B" "E"

[3,] "C" "F"

> mat.4 <- matrix(data=c("A","B","C","D","E","F"), ncol=3)

> mat.4

12
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[,1] [,2] [,3]

[1,] "A" "C" "E"

[2,] "B" "D" "F"

Names for columns and rows can be set with the functions colnames() or rownames()

(this is also a useful tool for data frames):

> colnames(mat.2) <- c("one","two","three")

> rownames(mat.2) <- c("A","B")

> mat.2

one two three

A 1 2 3

B 4 3 6

A matrix can be transposed with the function t(). The function dim() returns the
dimensions (number of rows and columns).

1.5.4.3 List

A list is an assemblage of objects which contain e.g. a test output. It is possible to
combine several data types in one list:

> vec.numeric <- c(1:6)

> mat.character <- rbind(c("tomato","cucumber", "iceberg","pepper",

+ "egg fruit","cauliflower"), c(1,4,6,2,7,9), c("D5","A1","E9","G3",

+ "B5","P1"))

> list.1 <- list(example.vec=vec.numeric, example.mat=mat.character)

> list.1

$example.vec

[1] 1 2 3 4 5 6

$example.mat

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] "tomato" "cucumber" "iceberg" "pepper" "egg fruit" "cauliflower"

[2,] "1" "4" "6" "2" "7" "9"

[3,] "D5" "A1" "E9" "G3" "B5" "P1"

Naming and adding of list elements:

> names(list.1)[2] <- "new name"

> list.1$new.element <- c(9,8,7,6,5)

> list.1

$example.vec

[1] 1 2 3 4 5 6

$`new name`
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] "tomato" "cucumber" "iceberg" "pepper" "egg fruit" "cauliflower"

[2,] "1" "4" "6" "2" "7" "9"

[3,] "D5" "A1" "E9" "G3" "B5" "P1"

13
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$new.element

[1] 9 8 7 6 5

The function names() returns the names of list and data frame elements.

1.5.4.4 Data Frame

The data frame is a two dimensional data structure that might contain different data
types in separated columns. It is most frequently used in biometry. All columns must
have the same length:

> x <- c(1:6)

> x[2] <- 12

> treatment <- rep(x=c("A","B"), each = 3)

> my.frame <- data.frame(group=treatment, value=x)

> my.frame

group value

1 A 1

2 A 12

3 A 3

4 B 4

5 B 5

6 B 6

The function transform() serves for editing a data frame:

> new.frame<- transform(my.frame,evaluation=c("low",NA,"medium","medium",

+ "medium","high"))

> new.frame

group value evaluation

1 A 1 low

2 A 12 <NA>

3 A 3 medium

4 B 4 medium

5 B 5 medium

6 B 6 high

1.5.4.5 Subsets

The command vectorname[positionnumber(s)] allows access to the single values of
vectors.

> vec.8[2]

b

3

> vec.8[2:4]

14
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b c d

3 5 7

> vec.8[c(1,3,4)]

a c d

1 5 7

The command can be applied on a matrix similarly but both, row and column numbers,
have to be indicated in this case (matrixname[rownumber(s),columnnumber(s)]) . The
respective matrix data is returned as a vector:

> mat.3[1,2]

[1] "D"

> mat.3[c(2,3),2]

[1] "E" "F"

The command listname[elementnumber] returns a new list containing the appropriate
element. The alternative listname[[elementnumber]] returns the element in its original
data type (e.g. as a vector):

> list.1[1]

$example.vec

[1] 1 2 3 4 5 6

> list.1[[1]]

[1] 1 2 3 4 5 6

Calling columns, rows and single values from data frames works as described for matrix.
objectname$elementname/columnname offers another alternative for calling objects from
lists and data frames:

> list.1$example.vec

[1] 1 2 3 4 5 6

> my.frame$group

[1] A A A B B B

Levels: A B

If elements of lists and data frames are called frequently, they can be attached temporarily
with the function attach(). The element is thereafter called simply by its name or
column header. It is of high importance to detach the object afterwards in order to avoid
conflicts between different attached data sets (detach()):

15
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> attach(list.1)

> example.vec

[1] 1 2 3 4 5 6

> detach(list.1)

The function subset() returns subsets which fulfill defined criteria, e.g. all elements in
my.frame, that are greater than 3:

> subset(x = my.frame, subset = value > 3)

group value

2 A 12

4 B 4

5 B 5

6 B 6

1.5.5 Import and Export of Data Sets

A file written in the
flat file format con-
tains the entire in-
formation for a sin-
gle entry in each row,
e.g. block: A, repeti-
tion: 3, plant height:
5.

On Windows, the package RODBC assists in the import of Excel data sheets. The source
file, an Excel sheet in this case, should be written in the flat file format:

In German versions
of excel, a data sheet
is indicated with
the German word
Tabelle instead of
Sheet.

> library(rodbc)

> full.data <- odbcConnectExcel("filename.xls")

> sqlTables(full.data)

> data <- sqlQuery(full.data, 'select * from "Sheet1$"')
> odbcCloseAll()

The full directory name to the target file is omitted if the appropriate directory has been
set previously by clicking on the submenu Change Directory in File (setwd() serves
the same purpose).

Another handy alternative for data import on Windows is the Copy & Paste method.
Therefore, the data set is fully marked and copied with Ctrl C and afterwards recalled
with the following command in the R console:

> data <- read.table(file("clipboard"), header = TRUE)

header defines whether the original dataset has a header (set on TRUE) or if there is no
header to be imported (default value FALSE). If the default value of a parameter is used,
the argument does not have to be indicated in the command.

On Linux, neither the import of Excel files nor the Copy & Paste method works properly.
An alternative that works on all platforms is therefore the import of *.txt or *.csv files.
The excel sheet can either be saved as a *.txt directly from excel or it might be copied
into a text editor and be saved as a *.txt from there. The import command is then:

> data <- read.table(file = "/path/to/file/filename.txt", header = TRUE,

+ sep = "\t", dec = ",")

The argument sep specifies the separator for the different columns. Tabulator is the
default value.

16
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dec defines if a dot or a comma is used as decimal sign. The default value in R is the
international dot. In most European countries, commas are commonly used.

The function write.table() saves datasets from R in an external *.txt file:

> write.table(x = my.frame, file = "/path/to/file/filename.txt",

+ sep = "\t", dec=".", col.names = TRUE)

col.names has the same function as header in read.table(), it defines whether there
exist column names (default) or not.

1.5.6 Workspace Management

The practical navigation through previously used commands with the arrow keys (section
1.5.1) gets lost with a restart of R if the workspace has not been saved in a known
directory. The following functions can be used to save and recall the command history:

> savehistory(file = "filename.Rhistory")

> loadhistory(file = "filename.Rhistory")

On Windows, the GUI subentry Save workspace... in the menu File saves all currently
used objects. They can be recalled with the subentry Load workspace.... On all
platforms, the commands save() and load() serve the same purpose:

> save(list = ls(), file = "filename.RData")

> load(file = "filename.RData")

On Windows, the produced source code of a session can be saved in a *.txt file by clicking
on Save to file... in the menu File. On all platform the command save.image() saves
source code in e.g. a *.txt file.

Regarding the process of saving and loading files (also import and export of data sets),
the function setwd() is important for setting a working directory where files are saved
or loaded:

setwd("/directory")

This functionality is also offered through the GUI on Windows: File – Change Direc-
tory. The function getwd() calls the current directory.

The usage of an editor is very helpful regarding clarity and long term backup (see section
1.4.5).

. Exercise 1

1. Calculate in R the second binomial formula

(a− b)2

using a = 12 and b = 7. Create the objects a and b! Save the result in an object
with a definite name!

2. Create an object containing the reverse running numbers from 28 to -34!

3. Call help for the function objects() and close it correctly! Use the function ob-

jects() to see all existing objects! Remove object a!

4. Create a data frame in the flat file format for table 1.1!
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Batch Culture Solution Plant 1 Plant 2 Plant 3

A Complete 1172 750 784
B Lacking magnesium 67 95 59
C Lacking nitrogen 148 234 92
D Lacking micro-nutrients 297 243 263

Table 1.1: A plant nutrition experiment with sunflowers in water culture. End point is
the dry weight in (mg) (Bishop, 1980, p. 1).
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Descriptive Statistics

2.1 Basic Functions

A vector is created in order to demonstrate the basic functions of descriptive statistics:

> data <- c(34,5,23,17,23,19,21,12,25,22,19,19,12,22,17)

mean() calculates the mean of data:

> mean(data)

[1] 19.33333

The usage of sd() for standard deviation, median(), var() for the variance, IQR() for
the interquartile range, min() for the minimum, max() for the maximum, range() for
minimum and maximum, diff() for the range and sum() is identical.

The variation coefficient is returned with the following command:

> var.coeff <- sd(data)/mean(data)

> var.coeff

[1] 0.3429134

The function quantile() calculates per default the 0%, 25%, 50%, 75% and 100%
quartile. It is possible to specify the quantiles with probs:

> quantile(data, probs=c(0.25,0.75)) # calculates the 25 and

+ 75 percent quartiles

25% 75%

17.0 22.5

The function summary() returns a summary of the most important statistics for a sample:

> summary(data)

Min. 1st Qu. Median Mean 3rd Qu. Max.

5.00 17.00 19.00 19.33 22.50 34.00
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2.2 Loops with tapply()

The looping function tapply() offers the possibility of a fast and easy statistic analysis
of flat file datasets with different categories (e.g. treatments).

tapply(X, INDEX, FUN = NULL, ...)

X stands for the response variable, e.g. as a column in a data frame. INDEX identifies the
grouping column or vector containing the different levels (e.g. treatments).

FUN specifies the applied function of descriptive statistics, e.g. sum, mean, var or IQR.

tapply() returns an array with the calculated results.

2.2.1 Example Soil Respiration (1)

2.2.1.1 Experiment

Growth Gap

17 22
20 29
170 13
315 16
22 15
190 18
64 14

6

Data 2.1: Soil res-
piration (mol CO2/g
soil/hr).

Plant growth is influenced by the microbial activity in the soil. Soil respiration is an
indicator for this activity. Soil samples from two characteristic areas in the forest (gap
= ”clearing and growth” and growth = ”dense tree population”) have been analyzed
regarding their carbon dioxide output in an experiment. The amount of excreted CO2

has been measured in mol CO2 g−1 soil hr−1 (see data 2.1) (Fierer, 1994) cited according
to Samuels and Witmer (2003, p. 289).

2.2.1.2 Statistical Analysis

Calculation of mean, standard deviation, median, variance and quartiles with tapply():

> soil <- data.frame(treatment = c(rep(c("growth"), times = 7),

+ rep(c("gap"), times = 8)),response = c(17,20,170,315,22,190,64,22,29,13,

+ 16,15,18,14,6))

> tapply(X = soil$response, INDEX = soil$treatment, FUN = mean)

gap growth

16.625 114.000

> tapply(X = soil$response, INDEX = soil$treatment, FUN = sd)

gap growth

6.759913 114.398427

> tapply(X = soil$response, INDEX = soil$treatment, FUN = median)

gap growth

15.5 64.0

> tapply(X = soil$response, INDEX = soil$treatment, FUN = var)

gap growth

45.69643 13087.00000

> tapply(X = soil$response, INDEX = soil$treatment, FUN = quantile)
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$gap

0% 25% 50% 75% 100%

6.00 13.75 15.50 19.00 29.00

$growth

0% 25% 50% 75% 100%

17 21 64 180 315

2.3 The Function stat.desc()

The add on package pastecs comes along with a function called stat.desc() which
returns a table with many values of descriptive statistics for several variables:

stat.desc(x, basic=TRUE, desc=TRUE, p=0.95, ...)

x is a data frame.

basic is set on TRUE by default. This means that the values for number of observations,
number of values that are zero, number of NAs, minimum, maximum, range and sum of
all not missing values are returned in the table. If the argument is set on FALSE, those
values will be missing in the output.

The argument desc is responsible for the output of descriptive statistics. If it is set on
TRUE (which is default), the values median, mean, standard error of mean, confidence
interval for the mean according to the set confidence level p, variance, standard deviation
and variation coefficient will be returned in the output.

2.3.1 Example Soil Respiration (2)

pastecs is loaded with the function library():

> library(pastecs)

stat.desc() produces a comprehensive output:

> stat.desc(x = soil)

treatment response

nbr.val NA 15.00000

nbr.null NA 0.00000

nbr.na NA 0.00000

min NA 6.00000

max NA 315.00000

range NA 309.00000

sum NA 931.00000

median NA 20.00000

mean NA 62.06667

SE.mean NA 23.32390

CI.mean NA 50.02480

var NA 8160.06667

std.dev NA 90.33309

coef.var NA 1.45542
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. Exercise 2

Salad
Bowl

Bibb

3.06 1.31
2.78 1.17
2.87 1.72
3.52 1.20
3.81 1.55
3.60 1.53
3.30
2.77
3.62

Data 2.2: Dry weight
of two lettuce varieties
(g).

The lettuce varieties Salad Bowl and Bibb have been grown in a greenhouse under iden-
tical conditions for 16 days. Data 2.2 presents the dry weight of leaves from nine plants
Salad Bowl and six plants Bibb (Samuels and Witmer, 2003, p. 226).

Create a data frame in the flat file format!

Calculate for both varieties the mean, standard deviation, median, variance, minimum,
maximum, quartiles, sum and IQR respectively by using the function tapply().
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Graphics in R

R offers a huge amount of graphical functions. Most of the parameters for plotting
functions can be applied universally. The example boxplot() points out the difference
between a standard (default) plot and a plot with more specified arguments.

3.1 Boxplot

A boxplot shows the distribution of a sample. Therefore, it is often used to check the
normal distribution. Several boxplots are helpful to estimate the homogeneity of variances
between different samples (see section 5.1).

Some parameters of the function boxplot():

boxplot(x, col = NULL, xlab = "...", ylab = "...", main = "...")

x is either a vector or a list containing several vectors. Alternatively, data might be
specified with the formula construct:

formula = observations ~ grouping factor with two levels,

data = ..., subset = ..., na.action

Using the formula construct, group names are treated alphabetically (first position in
the alphabet = first position in the function, e.g. first boxplot).

col specifies the color of the graph. The function color() calls all predefined colors.

xlab and ylab set the axes labels. The group names will be displayed by default (if
header of a data frame column).

main adds a diagram title. This might be replaced by a separate function called title().

Figure 3.1 shows the difference between the default configuration (specification of the
dataset only) and a personalized plot with several arguments.

3.1.1 Example Soil Respiration (3)

Recalling the data from section 2.2.1, boxplots for gaps and dense tree population are
drawn (figure 3.2):

> boxplot(formula = response~treatment, data = soil, col = "red1",

+ ylab = "Soil Respiration (mol CO2/g soil/hr)")
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Figure 3.1: The difference between default configuration (left: boxplot(x = data)) and
the specification of additional arguments (right boxplot(x = data, col = ”red1”, xlab =
”Rüben”, ylab = ”Befallsdichte”, main = ”Beispielboxplot”).

> title("Soil Respiration in the Forest")

3.2 Histogram

A histogram shows frequency and might also be used to obtain the normal distribution
of a sample.

3.2.1 Example Soybeans (1)

3.2.1.1 Experiment

20.2 22.9
23.2 20.0
19.4 22.0
22.1 22.0
21.9 21.5
19.7 21.5
20.9

Data 3.1: Stem length
of soy bean seedlings.

”As part of a study on plant growth, a plant physiologist grew 13 individually potted
soybean seedlings of the type Wells II. She raised the plants in a greenhouse under
identical environmental conditions (light, temperature, soil and so on). She measured
the total stem length (cm) for each plant after 16 days of growth” (Data 3.1) (Pappas
and Mitchell, 1984, the actual experiment contained several groups treated with different
environmental conditions.), raw data published in Samuels and Witmer (2003, p. 179).

3.2.1.2 Graphical Presentation of Data

The function hist() creates a histogram (figure 3.3):

> beans <- c(20.2,22.9,23.3,20,19.4,22,22.1,22,21.9,21.5,19.7,

+ 21.5,20.9)

> hist(beans, col = "red1", main = "Histogram of Soybean Seedlings",

+ breaks = 5)

The argument breaks defines the number of cells displayed in the histogram.

The argument type can be set p for points, l for line or b for both line and points.
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Figure 3.2: Boxplots of soil respiration in the forest.

3.3 Scatterplot

The function plot() returns the graph of an empiric cumulative distribution in its basic
functionality.

The data about sugar beets (section 9.2.5) are used for visualization (figure 3.4).

> beets <- read.table(file = "../text/beets.txt", sep = "\t",

+ header = TRUE)

> plot(yield~water, data = beets, col = "red1", xlab = "irrigation (mm)",

+ ylab = "yield (t/ha)", main = "Sugar Beet Irrigation")

Attention! The
function plot ac-
cepts data input in
form of a formula

construct, but only
if the part formula

= is left out!

The function abline() fits e.g. a horizontal line through the graph:

> abline(h = 14, col = "red1")

3.4 QQ-Plot

The QQ-plot for normal distribution is created with the function qqnorm() (see figure
3.5). qqline() fits a straight line through the points:

> qqnorm(beans, col = "red1", main = "QQ-Plot of Soybeans")

> qqline(beans, col = "red1")
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Figure 3.3: Histogram of soybean stem length.

The function qq.plot() in the package car provides a qq-plot for other distributions.

More examples for the usage of plot() and qqnorm() are presented in section 9.2.3.

3.5 Other Graphical Functions

R offers the opportunity to plot objects, e.g. confidence intervals, directly (see section
11.2.4.6 and regression diagnostics in sections 9.2.3 and 9.2.5.3).

Frequently used in Biology and Horticulture are in addition the stem-leaf diagram (stem()),
barplot() and the pie diagram (pie()).

. Exercise 3

Use the data from Exercise 2 (Data 2.2) to plot the boxplots for the different varieties!
Define title, axes names and box color!
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Figure 3.4: Sugar beet data as an example for a scatterplot.
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Figure 3.5: QQ-plot of soybean data.

28



Chapter 4

F-Test

4.1 Assumptions

The F-Test 1 is used in this manual as a tool for the decision which test is used for
the comparison of two samples. It checks for heterogeneity of variances. The test result
completes the consideration of boxplots as described in section 5.1.

The hypotheses for this test are called:

Attention! A sig-
nificance in the F-
test concludes a het-
erogeneity in vari-
ances. It is not pos-
sible to conclude a
homogeneity from a
non significant test
result. I regard a p-
value close to 1 ac-
companied by a look
at the boxplots as an
indicator for homo-
geneity of variances
in this manual.

H0 :
σA
σB

= 1

H1 :
σA
σB
6= 1

Normal distribution of both samples is an important assumption for the F-test (see section
5.1).

4.2 Implementation

4.2.1 The Function var.test()

var.test(x, y, ratio = 1, alternative = c("two.sided", "less", "greater"),

conf.level = 0.95, ...)

x and y are two numerical vectors. Alternatively, data can be indicated with a formula

construct (see section 3.1).

ratio refers to the ratio of variances in the working hypotheses. The default value is 1.

alternative specifies a one- or two-sided test. Default value is two.sided.

conf.level defines the confidence level, 0.95 is default.

Used as a pre-test for a t-Test or Wilcoxon rank sum test, the only obligatory argument
are two data vectors or a formula construct. The default configuration calculates a
two-sided test for the ratio 1 to a confidence level of 0.95.

1There exists another F-Test called ANOVA (see chapter 10) which takes advantage of the same
distribution obtaining another result. ANOVA checks for differences in two or more samples by analysis
of variances.
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4.2.2 Example ”Wisconsin Fast Plant” (1)

4.2.2.1 Experiment

Control Ancy

10.0 13.2
13.2 19.5
19.8 11.0
19.3 5.8
21.2 12.8
13.9 7.1
20.3 7.7
9.6

Data 4.1: Height of
Brassica plants after 14
days (cm).

”The ”Wisconsin Fast Plant”, Brassica campestris, has a very rapid growth cycle that
makes it particularly well suited for the study of factors that affect plant growth. In one
such study, seven plants were treated with the substance Ancymidol (ancy) and were
compared to eight control plants that were given ordinary water. Heights of all of the
plants were measured, in cm, after 14 days of growth” (Data 4.1) (Ahern, 1998) cited
according to Samuels and Witmer (2003, p. 228, author indicates that this data is only
a randomly selected subset of the original data). Ancymidol is a growth suppressor used
in agriculture as a herbicide.

Are the variances homogeneous?

4.2.2.2 Statistical Analysis

> brassica <- read.table("../text/brassica.txt", sep = "\t",

+ header = TRUE)

> var.test(formula = height~group, data = brassica)

F test to compare two variances

data: height by group

F = 0.97316, num df = 6, denom df = 7, p-value = 0.9898

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:

0.1901215 5.5425762

sample estimates:

ratio of variances

0.9731551

4.2.2.3 Interpretation

Please see section 5.2.3.2 for general interpretation instructions. The p-value is compared
to an α-error that has been set a priori. If the p-value is smaller than α then the
alternative hypothesis will be accepted.

The F-test checks for heterogeneity of variances. Although the homogeneity of variances
is more interesting in this case, there is no test for homogeneity existing as far as I
know. There are no general rules how to treat the output of a F-test when looking for
homogeneity. I assume the variances to be more or less homogeneous if the p-value is
rather big - including the interpretation of the boxplots. The arguments of var.test()
are described in chapter 5.

A p-value of 0.9898 implies, that there is no significant heterogeneity in variances (com-
paring with an α of 5%) =⇒ homogeneity of variances.
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Chapter 5

t-Test

5.1 Assumptions

The parametric t-Test compares the mean of two samples.

The ”classical” t-Test is used with the following assumptions:

• Approximate normal distribution of data is read from the boxplots: The
median lies in the middle of the box and both whiskers have an equal length (see
figure 5.1. Watch each boxplot single!) The normal distribution results in continuity
of data, e.g. temperatures measured in Kelvin or lengths measured in metres.

• Homogeneity of variances is either read from the boxplots: The respective
boxes including whiskers have the same length. Or the homogeneity of variances
is checked with a statistical test. Chapter 4 describes the F-test for two variances
(var.test()).

• Independence of data is not fulfilled if one has e.g. taken data on the same fruit
trees in two consecutive years. In vitro explants that originate in the same mother
plant are not allowed to be treated as independent.

The Welch t-test is very similar to the ”classical” t-Test. Assumptions are normal
distribution as well as independence of data. But the Welch t-test is more tolerant to
heterogeneity in variances.

A paired t-Test implies:

• Paired data: A paired sample results from e.g. the investigation of the effect of
two insecticides on different branches of the same tree.

• Normal distribution of the differences in mean (Boxplot).

5.2 Implementation

5.2.1 The Function t.test()

t.test(x, y = NULL, alternative = c("two.sided", "less", "greater"),

var.equal = FALSE, paired = FALSE, conf.level = 0.95, ...)

or
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●

●●
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Figure 5.1: Boxplot example for a t-test.

t.test(formula, data, subset, na.action, ...)

x and y represent two vectors that will be compared. x is the only essential variable while
y is an optional argument (the function t.test() might be used for a one sample t-test).
Alternatively, data can be implied with the formula-construct (section 3.1).

data specifies the data set for a formula-construct.

subset selects data that will be ex- or included regarding certain criteria (see section
1.5.4.5).

na.action defines the treatment for values which are not available. Options for this
argument are called with:

getOption("na.action").

alternative indicates whether a two-sided (H1: µ1 6= µ2), one-sided acceding (H1: µ1

Attention! R sorts
variables called with
a formula-construct
alphabetically. That
means B > A has
to be indicated with
alternative =
less.

> µ2) or one-sided seceding (H1: µ1 < µ2) test is calculated.

var.equal declares whether the variances are heterogeneous (FALSE) or homogeneous
(TRUE). The default is FALSE, which stands for a t-Welch test. It has to be set on TRUE

for a classical t-Test.

conf.level specifies the confidence level. The α error is calculated from 1 - conf.level.
0.95 is the default value (95% ⇒ α = 5%).

paired is set on FALSE by default. A paired t-Test is calculated if it is set on TRUE.
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5.2.2 The Function qt()

qt() calculates the quantile for a given p-value and degrees of freedom separately.

qt(p, df, lower.tail = TRUE)

p represents the given p-value, df stands for degrees of freedom.

The default argument lower.tail = TRUE is used for two-sided and one-sided seceding
tests (X ≤ x). It has to be set on FALSE for a one-sided acceding test.

5.2.3 Example ”Wisconsin Fast Plant” (2)

Referring to the Data given in section 4.2.2, the question is now whether the two samples
differ significantly in means (α = 5%).

5.2.3.1 Statistical Analysis

> brassica <- read.table("../text/brassica.txt", sep = "\t",

+ header = TRUE)

> boxplot(formula = height~group, data = brassica, ylab = "height in cm",

+ main="Height of Brassica Plants", col = "red", names = c("control", "ancy"))

control ancy

10
15

20

Height of Brassica Plants

he
ig

ht
 in

 c
m

Figure 5.2: Boxplots of Brassica plant height after 14 days.

4 Approximate normal distribution is accepted because the median is located in
the middle of both boxes (see figure 5.2).
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4 Approximate homogeneity of variances, see result of F-test in section 4.2.2.

4 Continuous data because height is indicated in cm

4 Independency of data because the plants were treated independent from each
other.

=⇒ Data is suiting for the analysis with a classical t-Test. Ancymidol is a growth
repressor. Therefore, a one-sided test with the expectation that Ancymidol treated plants
are smaller than the control group is calculated. Hypotheses:

H0 : µcontrol ≤ µancy
H1 : µcontrol > µancy

> t.test(formula = height~group, data = brassica, var.equal = TRUE,

+ alternative = "less", conf.level = 0.95)

Two Sample t-test

data: height by group

t = -1.9919, df = 13, p-value = 0.03391

alternative hypothesis: true difference in means is less than 0

95 percent confidence interval:

-Inf -0.543402

sample estimates:

mean in group ancy mean in group control

11.01429 15.91250

5.2.3.2 Interpretation

Two Sample t-test

The line presents the test header. If the variable var.equal = TRUE would not have been
set, the function would return Welch Two Sample t-test.

data: height by group

This says that the formula-construct compared heights dependent on the group.

t = -1.9919, df = 13, p-value = 0.03391

The test statistic t amounts 1.9919. This value is usually compared to a table value.
The comparison of means is called ”significant” if the t-value is more extreme than the
table value for the respective quantile and degrees of freedom. Degrees of freedom are
printed as df = 13. The p-value is compared to the respective α-error. The test result
is significant if the p-value is smaller than α.

α must be set a priori before the test itself is calculated! In R, the default of α is 5%.
The plants treated with Ancymidol are significantly shorter than the non treated control
group because 0.03391 < 0.5. The alternative hypothesis is accepted.

The test statistic can be calculated with qt() separately:

> qt(0.03391, 13, lower.tail = FALSE)
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[1] 1.99187

alternative hypothesis: true difference in means is greater than 0

This line returns the alternative hypothesis.

95 percent confidence interval:

-Inf -0.543402

The 95% confidence interval for the difference of the true parameters µcontrol - µancy is
displayed. If the experiment was repeated infinite times, the true difference would be
located within the respective confidence interval in 95% of all cases . However, there is
no statement about the current experiment in it.

Practice: If the confidence interval includes zero, the test result is counted as not signif-
icant. If the result is significant (zero not included), the difference to zero represents a
measure of rejection of the H0-hypothesis. The interval width accounts for scattering and
the number of observations. In general, confidence intervals are displayed in the original
data’s dimension: in this example measurements in centimeteres.

The given confidence interval 0.543402 Inf indicates a significance to a confidence level
of 0.95 because zero is excluded: µcontrol - µancy = 0 can be rejected with an error
probability of 5%. More detailed, the confidence interval indicates that the control plants
are at least 0.542402 cm higher than the Ancymidol treated plants.

sample estimates:

mean in group ancy mean in group control

11.01429 15.91250

Output of the mean values. Plants treated with Ancymidol have an average height of
11.0 cm whereas the control plants have a mean height of 15.9 cm.

The overall conclusion for this experiment is that the alternative hypothesis is accepted
with a confidence level of 0.95.

. Exercise 4

Standard Additive

109 107
68 72
82 88
104 101
93 97

Data 4.2: The effect
of a new disinfection
additive fighting white
small worms on straw-
berries.

The infection of strawberries with small white worms leads to a reduction in harvest.
It is possible to fight the parasite with disinfectants. An new additive is suspected to
extend the effective period but side effects on the strawberry plants are still unknown.
Five plots on a field have randomly been chosen to investigate the overall effect of the
additive on strawberry plants. Each plot was randomly divided in two parts where one
half was treated with the disinfectant without additive and the other half was treated with
disinfectant and additive. The strawberry yield in presented in Data 4.2 (Wonnacott
and Wonnacott, 1990, p. 273)

Develop convenient working hypotheses. Is the data normal distributed and homogeneous
in variances? Which test do you choose? Interpret the output!

5.2.4 Example: Root Growth of Mustard Seedlings

5.2.4.1 Experiment

light dark

21 22
39 16
31 20
13 14
52 32
39 28
55 36
50 41
29 17
17 22

Data 4.3: Root growth
of mustard seedlings
(cm).

The influence of light and darkness on the root growth of mustard seedlings has been
investigated in an experiment (Hand et al., 1994, p. 75, this is a subset of the complete
dataset). The question is if the length of roots differs for the two treatments (Data 4.3).
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5.2.4.2 Statistical Analysis

> mustard <- read.table(file = "../text/mustard.txt", sep = "\t",

+ header = TRUE)

> boxplot(formula = response~treatment, data = mustard, col = "red",

+ ylab = "rootlength (cm)")

> title("Root Growth of Mustard Seedlings")

grown.in.darkness grown.with.light

20
30

40
50

ro
ot

le
ng

th
 (

cm
)

Root Growth of Mustard Seedlings

Figure 5.3: Boxplots for root growth of mustard seedlings.

4 Approximate normal distribution (figure 5.3) and continuity of data (root length
was measured in cm).

4 Heterogeneity of variances (figure 5.3, boxes differ in length).

4 The different treatments are assumend to be independent.

A two-sided hypothesis is reasonable: the direction of a light effect on mustard roots is
unknown. The α-error is set on 5%. Pair of hypotheses:

H0 : µlight = µdark

H1 : µlight 6= µdark

> t.test(formula = response~treatment, data = mustard,

+ alternative = "two.sided", conf.level = 0.95)
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Welch Two Sample t-test

data: response by treatment

t = -1.7748, df = 14.879, p-value = 0.09638

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-21.57753 1.97753

sample estimates:

mean in group grown.in.darkness mean in group grown.with.light

24.8 34.6

5.2.4.3 Interpretation

The output is interpreted as shown in section 5.2.3.2.

t = -1.7748, df = 14.879, p-value = 0.09638

The p-value is greater than 0.05. Therefore, the roots of mustard seedlings grown with
light and in darkness do not differ significantly with an error probability of 5%. It would
have been possible to compare the p-value with another α, e.g. 0.1. In this case, the
result would have been significant. But as mentioned before, the α-error has to be set a
priori before calculating the test.

Due to the principle of a t-Welch test, the number of degrees of freedom is reduced.

95 percent confidence interval:

-21.577530 1.977530

Zero is included in the confidence interval which means that the test result is not signif-
icant to a confidence level of 95%.

sample estimates:

mean in group grown.in.darkness mean in group grown.with.light

24.8 34.6

Plants grown in darkness have an average root length of 24.8 cm, whereas the group
treated with light has an average root length of 34.6 cm.

This test result leads to the conclusion that the null hypothesis cannot be rejected to a
confidence level of 0.95. However, this does not assure the equality of the two samples
because a t-test is not checking for homogeneity.

. Exercise 5

Salad
Bowl

Bibb

3.06 1.31
2.78 1.17
2.87 1.72
3.52 1.20
3.81 1.55
3.60 1.53
3.30
2.77
3.62

Data 4.4: Leave dry
weight of two lettuce
varieties.

”Two varieties of lettuce were grown for 16 days in a controlled environment. Data 4.4
shows the total dry weight (in g) of the leaves of nine plants of the variety Salad Bowl
and six plants of the variety Bibb.” (Knight and Mitchell, 2000, author states that the
actual sample sizes were equal; some observations have been omitted.) cited according
to Samuels and Witmer (2003, p. 226).

Find adequate hypotheses. Is the data normal distributed and homogeneous in variances?
Which test do you choose? Interpret the R-output!
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5.2.5 Example: Growth Induction

In an experiment, a certain treatment is supposed to initiate growth induction. 20 plants
have been divided in two groups by fitting pairs that are as similar as possible. One
group was treated, the other was left as a control (Data 4.5) (Mead et al., 2003, p. 72,
data has been modified slightly.).

> growth <- read.table("../text/growth.txt")

> differences <- growth$height[1:10] - growth$height[11:20]

> boxplot(x = differences, col = "red", ylab = "growth",

+ main = "Pair Differences")

−
2

−
1

0
1

2
3

4

Pair Differences

gr
ow

th

Figure 5.4: Boxplots for growth induction.

4 Approximate normal distribution of pair differences (figure 5.4, the test is as-
sumed to be robust to a median which is not perfectly located in the boxes’ middle).

4 Paired data because plant pairs that are as similar as possible have been formed.

=⇒ Paired one-sided t-test (because it is expected that a growth inductor created taller

Treated
plant

Control
plant

7 4
10 6
9 10
8 8
7 5
6 3
8 10
9 8
12 8
13 10

Data 4.5: Growth in-
duction.

plants).

> t.test(formula = height~treatment, data = growth , paired = TRUE,

+ alternative = "less")

Paired t-test
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data: height by treatment

t = -2.5468, df = 9, p-value = 0.01568

alternative hypothesis: true difference in means is less than 0

95 percent confidence interval:

-Inf -0.4763981

sample estimates:

mean of the differences

-1.7

The p-value is smaller than 0.05. For this reason, the test result is significant. A treatment
for growth induction results in a stronger plant growth.

The analysis of confidence intervals leads to the same result: Zero is not included in
the interval which means that the test result is significant to a confidence level of 95%.
Plants treated with a growth inductor are at least 0.47 cm taller than the untreated
control group.
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Chapter 6

Wilcoxon Rank Sum Test

6.1 Assumptions

The t-test is not very tolerant for deviation from the normal distribution. The Wilcoxon
Rank Sum Test is used with consideration of an unknown distribution. Assumptions for
this test are:

• Homogeneity in variances.

• At least ordinal scaling.

• Independent data.

6.2 Implementation

6.2.1 The Function wilcox.test()

wilcox.test(x, y, alternative = c("two.sided", "less", "greater"),

paired = FALSE, correct = TRUE, exact = NULL,

conf.int = FALSE, conf.level = 0.95, ...)

or with a formula-construct:

wilcox.test(formula, data, subset, na.action, ...)

x is a numerical vector. y represents an optional second numerical vector for the two
sample test.

formula Alternatively, data might be stated with a formula-construct (see section 3.1).

alternative indicates whether a two-sided, one-sided acceding or one-sided seceding test
is calculated.

paired defines whether the data is dependent (see section 5.1). Default value is FALSE.

exact specifies whether the p-value shall be calculated correctly. The default FALSE

calculates an asymptotic p-value. An exact p-value should be calculated for numbers of
observations smaller than 50 in each group without ties. The function wilcox.test()

is not capable of calculating an exact p-value if the data contains ties. wilcox.test()
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calculates the asymptotic p-value when the number of observations is low and the data
contains ties. The package exactRankTests solves this problem (see section 6.2.2).

conf.int can be set on TRUE which results in the calculation of a Hodges-Lehmann
confidence interval.

conf.level sets the confidence level. The default value is 0.95.

correct states whether a continuity correction is applied. The default value is TRUE.

6.2.2 The Function wilcox.exact()

The package exactRankTests has to be installed and loaded with library(exactRankTests)

before using the function wilcox.exact() (see sections 1.4.2.1 and 1.4.3.1 for installation
instructions).

wilcox.exact(x, y = NULL, alternative = c("two.sided", "less", "greater"),

paired = FALSE, exact = NULL,

conf.int = FALSE, conf.level = 0.95, ...)

or

wilcox.exact(formula, data, subset, na.action, ...)

Control Stress

25.2 24.7
29.5 25.7
30.1 26.5
30.1 27.0
30.2 27.1
30.2 27.2
30.3 27.3
30.6 27.7
31.1 28.7
31.2 28.9
31.4 29.7
33.5 30.0
34.3 30.6

Data 6.1: Stem length
of soybean plants after
16 days of growth in
cm.

The variables in wilcox.exact() are in general the same as described for wilcox.test().
The only difference is that this function is able to calculate an exact p-value with tied
data. It is therefore reasonable to use this function throughout all Wilcoxon test prob-
lems.

6.2.3 Example Mechanical Stress

6.2.3.1 Experiment

”A plant physiologist conducted an experiment to determine whether mechanical stress
can retard the growth of soybean plants. Young plants were randomly allocated in two
groups of 13 plants each. Plants in one group were mechanically agitated by shaking
for 20 minutes twice daily, while plants in the other group were not agitated. After 16
days of growth, the total stem length (cm) of each plant was measured”, with the result
given in the Data 6.1 (Pappas and Mitchell, 1984), raw data published in Samuels and
Witmer (2003, p. 302, the actual experiment included several groups of plants grown
under different environmental conditions.).

6.2.3.2 Statistical Analysis

Previous research indicated that mechanically stressed plants tend to be shorter than
their non stressed relatives =⇒ one-sided test with the following hypotheses:

H0 : Fcontrol(y) ≤ Fstress(y)

H1 : Fcontrol(y) > Fstress(y)

> growth.retardant <- read.table(file = "../text/retardant.txt",

+ header = TRUE, sep = "\t")

> boxplot(formula = response~treatment, data = growth.retardant,
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+ col="yellow", ylab ="stem length (cm)", names = c("control","stress"),

+ main = "Stem Length of Soybean Plants")
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Figure 6.1: Boxplots for stem length of seismically stressed soybean plants. Data is not
normal distributed.

4 Continuous data (length measured in cm).

4 Homogeneity of variances is critical, tolerance is assumed.

4 Independent data (no fitted pairs, single plants have been measured independent
from each other).

6.2.3.3 Asymptotic p-value with wilcox.test

> wilcox.test(formula = response~treatment, data = growth.retardant,

+ correct = FALSE, exact = FALSE, alternative = "greater", conf.int = TRUE)

Wilcoxon rank sum test

data: response by treatment

W = 148.5, p-value = 0.0005122

alternative hypothesis: true location shift is greater than 0

95 percent confidence interval:

1.50005 Inf

sample estimates:

difference in location

3.000042
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Similar to a t-test output, the header and alternative hypothesis are printed in the be-
ginning.

W = 148.5, p-value = 0.0005122

Red Green

8.4 8.6
8.4 5.9
10.0 4.6
8.8 9.1
7.1 9.8
9.4 10.1
8.8 6.0
4.3 10.4
9.0 10.8
8.4 9.6
7.1 10.5
9.6 9.0
9.3 8.6
8.6 10.5
6.1 9.9
8.4 11.1
10.4 5.5

8.2
8.3
10.0
8.7
9.8
9.5
11.0
8.0

Data 6.2: Height of
soybean plants treated
with red and green light
two weeks after germi-
nation (inches).

W is the Wilcoxon test statistic. The extremely small p-value of 0.0005122 leads in this
case to the conclusion that plants exposed to seismic stress are highly significantly shorter
than the nonstressed control plants.1

95 percent confidence interval:

1.500050 Inf

Zero is included in the confidence interval of the Wilcoxon rank sum test. That means
the test result is significant to a confidence level of 95%. Nontreated plants are at least
1.5 cm up to infinite cm longer than plants exposed to seismic stress.

sample estimates:

difference in location

3.000042

Output of the sample estimate for the difference in location of both distributions.

6.2.3.4 Exact p-value with the Function exact.wilcox()

The number of observations in the respective groups is smaller than 50. Therefore, an
exact test is required. For the reason that the dataset contains ties, the exact p-value
needs to be calculated with the package exactRankTests:

> library(exactRankTests)

> wilcox.exact(formula = response~treatment, data = growth.retardant,

+ exact = TRUE, alternative = "greater", conf.int = TRUE)

Exact Wilcoxon rank sum test

data: response by treatment

W = 148.5, p-value = 0.0002604

alternative hypothesis: true mu is greater than 0

95 percent confidence interval:

1.5 Inf

sample estimates:

difference in location

3

Test statistic W, the exact p-value as well as the confidence interval are returned.

6.2.3.5 Conclusion

Plants treated with seismic stress are significantly shorter than the control group with
an error probability of 5%.

1Due to the small number of observations, the calculation of an exact p-value would be more correct.
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. Exercise 6

”A researcher investigated the effect of green and red light on the growth rate of soybean
plants. End point was the plant height two weeks after germination (measured in inches).
The different light colors were produced by the usage of thin colored plastic as used for
e.g. theater spot lights” (Data 6.2) (Gent, 1999), published in Samuels and Witmer
(2003, p. 243)).

• Which test is suitable for the evaluation of this data?

• Do you test one- or two-sided?

• Which are your hypotheses?

• Implement the exact test and interpret the output!
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Chapter 7

χ2-Test

7.1 Assumptions

The χ2-test is a nonparametric test suiting for e.g. dichotomous data. Dichotomous data
are a kind of discrete data. For example, Mendel’s yellow or green pea color, high or low
pest infestation and jagged or round shaped leaves are dichotomous end points.

7.1.1 χ2 Goodness-of-Fit Test

The χ2 Goodness-Of-Fit Test compares a measured distribution with a known, theoretical
distribution. The classical example is the comparison of an empirical phenotype ratio with
a predicted phenotype ratio in genetics . Two-sided hypotheses:

H0 : F0(x) = F1(x)

H1 : F0(x) 6= F1(x)

7.1.2 χ2 Homogeneity Test

The χ2 Homogeneity Test checks whether the procentual relation of two samples is dif-
ferent (e.g. infestation and no infestation for the treatments with and without
insecticide).

H0 : π0(x) = π1(x)

H1 : π0(x) 6= π1(x)

Both tests might be calculated one-sided.

7.2 Implementation

7.2.1 χ2 Goodness-of-Fit Test - chisq.test()

The function chisq.test() is implemented in the following form:

chisq.test(x, p = ...)
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x is a vector containing the observed distribution.

p for probability is a vector of the same length as x containing the expected distribution.

7.2.2 χ2 Homogeneity Test for 2x2-Tables - chisq.test()

chisq.test(x, correct = TRUE)

x represents a matrix in the form of a 2x2-table.

correct states whether the Yates-correction shall be used (number of observations smaller
than 20) or not. The default configuration (FALSE) calculates the original χ2-test accord-
ing to Pearson.

7.2.3 Useful Functions for χ2-Tests

pchisq() calculates a p-value for a known quantile for defined degrees of freedom:

pchisq(q, df, lower.tail = TRUE)

q is the χ2-value, the test statistic.

df represents the degrees of freedom.

lower.tail indicates the kind of probability. TRUE stands for 1 - α, FALSE stands for α.
TRUE is the default value. That means you have to indicate 0.95 for an α-error of 5%.

qchisq() calculates the test statistic for a known probability with specific degrees of
freedom:

qchisq(p, df, lower.tail = TRUE)

p represents the known probability.

7.2.4 Example Snapdragon

7.2.4.1 Experiment

Red Pink White

54 122 58

Table 7.1: Ratio of phe-
notypes in the F2 of snap-
dragon plants.

A geneticist, investigating the Mendelian predictions for F2
generations observed the ratio of phenotypes shown in table
7.1 for the F2 generation (Baur et al., 1931) cited according
to Samuels and Witmer (2003, p. 392f).

Does the observed result differ from the expected ratio of
1:2:1 for a F2 generation in the intermediate Mendelian
heredity (α-error 5%)?

7.2.4.2 Statistical Analysis

No appliance of the Yates-correction because there exist more than 20 observations.

> snapdragon <- c(54,122,58)

> mendel.probs <- c(1,2,1)/4

> chisq.test(x = snapdragon, p = mendel.probs)
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Chi-squared test for given probabilities

data: snapdragon

X-squared = 0.5641, df = 2, p-value = 0.7542

X-squared represents the test statistic while df gives the degrees of freedom.

p-value returns the two-sided p-value (chisq.test() is always testing two-sided.)

7.2.4.3 Interpretation

Color Acid
Level

No

brown low 15
brown medium 26
brown high 15
mottled low 0
mottled medium 8
mottled high 8

Table 7.2: Ratio of phenotypes
for flax seeds in the F1 genera-
tion.

The observed ratio of phenotypes does not differ sig-
nificantly from the Mendelian ratio for a F2 genera-
tion in the intermediate heredity. The H0 hypothesis
cannot be rejected.

. Exercise 7

”Researchers studied a mutant type of flax seed
that they hoped would produce oil for use in
margarine and shortening. The amount of
palmitic acid in the flax seed was an impor-
tant factor in this research; a related factor
was whether the seed was brown or variegated. The
seeds were classified into six combinations of palmitic acid and color, shown in table
7.2. According to a hypothesized genetic model, the six combinations should occur in a
3:6:3:1:2:1 ratio” (Saedi and Rowland, 1997) cited according to Samuels and Witmer
(2003, p. 395).

surviving dead

A 64 16
B 34 46

Table 7.3: Survival rate of barley
seeds with and without heat treat-
ment.

Does the observed distribution differ from the hy-
pothesized model?

7.2.5 Example Barley

7.2.5.1 Experiment

Researchers investigated the survival rate of barley
seeds after a heat treatment. Sample A was used as untreated control group whereas
Sample B was exposed to heat. All seeds were cut longitudinal and incubated in 0.1%
2,3,5-triphenyltetrazoliumchloride for half an hour. The breathing, living embryo reduces
tetrazoliumchloride to the intensively red colored insoluble substance triphenyl formazan.
Surviving seeds were counted according to color (see table 7.3) (Bishop, 1980, p. 76).

7.2.5.2 Statistical Analysis

Does the heat treatment reduce the survival rate of barely seeds? α = 1%.

H0 : πnoheat(x) ≤ πheat(x)

H1 : πnoheat(x) > πheat(x)

Since the number of observations is adequate, no Yates correction is used.
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> barley <- matrix(c(64,34,16,46), ncol = 2)

> line.names <- c("treatment.A","treatment.B")

> col.names <- c("viable", "not.viable")

> dimnames(barley) <- list(line.names,col.names)

> barley.chi <- chisq.test(barley,correct = FALSE)

> barley.chi

Pearson's Chi-squared test

data: barley

X-squared = 23.7, df = 1, p-value = 1.126e-06

chisq.test() calculates the two-sided p-value as a matter of principle. Therefore, the
p-value has to be divided by two or to be compared with a doubled α for a one-sided
comparison.

> barley.p <- barley.chi$p.value/2

> barley.p

[1] 5.629705e-07

Yes, the heat treatment does reduce the survival rate of barley seeds significantly to a
confidence level of 0.99.

. Exercise 8

Presence
A

Absence
A

Presence B 25 75
Absence B 25 75

Table 7.4: Questionable interaction of two
species in an ecosystem.

Some species occur associated with each
other in certain habitats. The reason might
be that both are influenced by similar micro
climates (e.g. shade plants usually appear
together with other shade liking plants), soil
conditions (e.g. chalk liking plants will be
accompanied by other chalk liking plants),
or that one species creates good living con-
ditions for the other one (e.g. host-parasite
relationships), or numerous other explanations. (...) A common method for the analysis
of such relationships is setting squares in which the respective species are counted. Table
7.4 represents an exemplary dataset (Bishop, 1980, p. 111).

Are those two species associated? α = 10%.
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Chapter 8

Analysis of Correlation

8.1 Assumptions

A linear coherence between one or more random variables in a sample is investigated
quantitatively by analysis of correlation. However, correlation does not return the math-
ematical equation. The correlation coefficient r is set between -1 and +1. The closer the
absolute value is located to 1, the better is the correlation. A negative coefficient implies
that the values of one variable are big while the other variable results in small values. A
positive coefficient is returned for data in which both variables are big or small.

The correlation coefficient itself does not state anything about the significance of corre-
lation. Therefore, a test resembling the t-test is used for checking the significance.

8.1.1 Pearson

Assumptions for a correlation according to Pearson are:

• Normal distributed data.

• Independence of observations.

Pearson’s correlation coefficient is named ρ.

8.1.2 Spearman

Correlation according to Spearman is nonparametric and therefore independent from
monotone coordinate transformation. Assumptions:

• (Normal distribution of data is not required.)

• Independency of observations.

8.2 Implementation

8.2.1 The Function cor()

cor() is used as follows:

49



8.2. IMPLEMENTATION CHAPTER 8. ANALYSIS OF CORRELATION

cor(x, y = NULL, use = "all.obs",

method = c("pearson", "spearman"))

x gives a vector or data frame. y is a vector containing the second variable.

The default value for use is all.obs (= all observations). Missing values produce an
error message. pairwise.complete.obs uses only complete pair observations.

method specifies whether a correlation according to Pearson or Spearman is calculated.

The function produces an output table presenting the coefficients of all possible correla-
tions.

8.2.2 The Function cor.test()

weight
(g)

length
(cm)

0.7 1.7
1.2 2.2
0.9 2.0
1.4 2.3
1.2 2.4
1.1 2.2
1.0 2.0
0.9 1.9
1.0 2.1
0.8 1.6

Data 8.1: Weight and
length of Broad Beans.

cor.test() tests the significance of a correlation. The hypotheses for a two-sided test
are:

H0 : ρ = 0

H1 : ρ 6= 0

cor.test(x, y,

alternative = c("two.sided", "less", "greater"),

method = c("pearson", "spearman"),

conf.level = 0.95, ...)

x, y represents two vectors. Alternatively, data might be specified with a formula-
construct:

formula = ~var1+var2, data = frame.name

method specifies whether a correlation according to Pearson or Spearman’s rank correla-
tion is calculated.

conf.level indicates the test’s confidence level (default are 95%).

8.2.3 Example broad beans

8.2.3.1 Experiment

A sample of broad beans classified as the variety Roger’s Emperor was investigated with
regard on length and weight (Data 8.1) (Bishop, 1980, p. 64).

8.2.3.2 Statistical Analysis

> broad <- read.table(file = "../text/broad.txt", sep = "\t",

+ header = TRUE)

> plot(length~weight, data = broad, col = "green3",

+ xlab = "length (cm)", ylab = "weight (g)")

> title("Scatterplot of the Broad Bean Data")

> boxplot(x = broad$weight, broad$length, col = "green3",

+ main = "Boxplots of the Broad Bean Data")
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Figure 8.1: Scatterplot of broad bean data.

Figure 8.1 leads to the expectation of a linear correlation with a positive coefficient (⇒
one-sided test).

4 Normal distribution of both variables (see figure 8.2)

4 Indepency of observations is assumed.

=⇒ Correlation according to Pearson.

cor returns all possible correlation coefficients:

leaf
area

dry
weight

411 2.00
550 2.47
471 2.11
393 1.89
427 2.05
431 2.30
492 2.46
371 2.06
470 2.25
419 2.07
407 2.17
489 2.32
439 2.12

Data 8.2: Leave
area (cm2) and dry
weight (g) of soybean
seedlings.

> cor(broad, method = "pearson")

weight length

weight 1.0000000 0.8983172

length 0.8983172 1.0000000

cor.test() investigates the correlation between length and weight of broad beans with
regard to the significance:

> cor.test(formula = ~length+weight, data = broad, method = "pearson",

+ alternative = "greater")

Pearson's product-moment correlation

data: length and weight
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Figure 8.2: Boxplot of broad bean data for an investigation of normal distribution.

t = 5.7832, df = 8, p-value = 0.0002065

alternative hypothesis: true correlation is greater than 0

95 percent confidence interval:

0.6867277 1.0000000

sample estimates:

cor

0.8983172

Ascorbic
acid
con-

centra-
tion
( µg
cm3 )

Response

150 5.9
300 4.8
450 3.7
600 2.4
750 0.9
900 0.0

Data 8.3: Photomet-
ric data of ascorbic acid
content.

The Pearson correlation with the coefficient (returned at cor) r = 0.0002065 is highly
significant with an error probability of 5%. Please see section 5.2.3.2 for confidence
interval interpretation instructions.

8.2.4 Example Soybeans (2)

”A plant physiologist grew 13 individually potted soybean seedlings in a greenhouse. Data
8.2 gives measurements of the total leaf area (cm2) and total plant dry weight (g) for
each plant after 16 days of growth” (Pappas and Mitchell, 1984), rawdata published in
Samuels and Witmer (2003, p. 563f, one dry weight value differs from the original data.).

> bean <- read.table(file = "../text/bean.txt", sep = "\t",

+ header = TRUE)

> plot(area~weight, data = bean, col = "green3", xlab = "area (squarecm)",

+ ylab = "dry weight (g)", main = "Soybean Data")

> boxplot(x = bean$area, col = "green3",

+ main = "Leaf Area of Soybean Seedlings", ylab = "area (squarecm)")
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> boxplot(x = bean$weight, col = "green3",

+ main = "Dry Weight of Soybean Seedlings", ylab = "dry weight (g)")
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Figure 8.3: Scatterplot of soybean data.

4 Normal distribution is rejected because the median does not lie in the box middle
(figures 8.4 and 8.5).

4 Independency of observations is assumed.

=⇒ Spearman’s Rank Correlation. Figure 8.3 implies a positive correlation coefficient.
Therefore, a one-sided acceding test is calculated:

> cor.test(formula = ~weight+area, data = bean, method = "spearman",

+ alternative = "greater")

Spearman's rank correlation rho

data: weight and area

S = 74, p-value = 0.0009218

alternative hypothesis: true rho is greater than 0

sample estimates:

rho

0.7967033

The correlation coefficient ρ is 0.7967022. The correlation is significant with an error
probability of 5% because the p-value 0.0008658 is much smaller than 0.05.
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Figure 8.4: Boxplot of soybean seedlings’ leaf area (checking for normal distribution).

. Exercise 9

The content of ascorbic acid is measured with a photoelectric absorption meter by using
the blue starch-iodine complex. In order to standardize this procedure, samples with a
known concentration of ascorbic acid are measured, first (Data 8.3) (Bishop, 1980, p.
70).

Are ascorbic acid concentration and metered values correlated significantly?
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Figure 8.5: Boxplot of soybean seedlings’ dry weight (checking for normal distribution).
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Chapter 9

Linear Regression

9.1 Assumptions

Correlation analyses checks for a linear coherence between to or more variables. Linear
regression calculates the mathematical function for a response variable influenced by one
or several predicting variables.

The simplified linear model contains α as y-axis intercept, β standing for the slope and
ε for the experimental error (i is the measured value number i):

yi = α+ βxi + εi

The following assumptions are prerequisites for a linear regression:

• The number of predicting values (x-values) must be at least two (preferably
more!)

• The number of repetitions over the entire experiment must be at least three.

• Homogeneity of variances of the residuals: Residuals shall be scattering
equally around the zero line in a residual plot. The range should not get smaller in
the middle nor on the endings. Homogeneity of variances might be checked with a
Levene test (function leveneTest() coming along with the car package).

• Normal distribution of residuals: The residual plot should ideally look like a
”sky full of stars” scattering around the horizontal zero line. A boxplot or QQ-Plot
might also be helpful for obtaining a normal distribution but this will not offer
the possibility to check for homogeneity of variances (because it is only one box
present).

9.2 Implementation

9.2.1 The Function lm()

lm() is used to calculate a linear model.

lm(formula, data, subset, na.action, ...)

Data is specified with a formula-construct (see section 3.1). The linear model function
returns intercept and slope of a straight line.
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9.2.2 The Function summary()

summary returns a list containing a lot of useful information about a linear model, e.g.
rough distribution of residuals, intercept and slope for a straight line.

summary(object, ...)

9.2.3 Functions Serving the Analysis of Residuals

water
(mm)

root
dry

weight
(t/ha)

0 9
0 10.3
0 11.5
0 14.2
48 12.2
50 13.8
48 14
50 16.2
88 14
88 14.5
100 15
88 15.3
145 17.8
137 18
150 18.1
153 18.4
177 16.9
189 17.6
200 16.8
200 17
209 18.2
210 17
213 17.5
222 18.5
227 17.2
227 17.4
234 19.2
239 16.8

Data 9.1: Sugar beet
yield response to differ-
ent amounts of irriga-
tion.

fitted(object, ...) calls the expected y-values for a linear model on the regression
line while resid(object, ...) calls the actual residuals of a linear model.

The plot() function followed by an abline() is used to investigate the distribution of
residuals graphically (see section 3.3):

plot(x, y, ...)

abline(h = 0)

x represents a vector containing expected values whereas y stands for a vector with the
residuals. The points should be scattering equally around the horizontal zero-line (sky
full of stars).

A Quantile-Quantile-Plot is another way to visualize residuals (function qqnorm() with
x as a vector containing the residuals):

qqnorm(x, ...)

qqline() applied on a linear model results in a straight line through the QQ-Plot.

Simple plotting of a linear model with plot(object = lm(...)) returns four different
graphs: the residual plot mentioned above, a QQ-Plot, the Scale-Location Plot1 and
Cook’s distance Plot2 .

plot(object, ...)

9.2.4 The Function leveneTest()

The Levene test can be used to verify the assumption of homogeneity in variances for two
and more groups while it is more tolerant to deviation from the normal distribution than
the F-test (comparing two samples only, var.test) and Bartlett’s Test for homogeneity
in variances (bartlett.test()).

The car package needs to be installed and loaded with library() for the usage of
leveneTest()!

leveneTest(y, group)

y is a response variable, e.g. residuals, group represents a grouping vector, e.g. different
treatments (this is similar to the usage of a formula construct). One has to be very careful
with the data type of a grouping variable. If the vector contains numerical values, the

1The Scale-Location Plot (diagram of dispersion) plots the square root of the absolute residuals
against the fitted values. It is used to check for non-constant variance.

2Cook’s Distance is a measure for the influence of a single observation on the regression coefficient.
An observation with a huge influence will change the regression coefficient considerably.
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p-value might be calculated incorrect because the function is based on anova(). However,
this problem might be solved by redefining the data type with as.character(group) or
as.factor(group). This problem is exclusively related to the functions leveneTest()

and anova(). It is by the time not possible to enter a ”real” formula-construct.

A significant p-value in the output indicates heterogeneity in variances.

9.2.5 Example Sugar Beets

9.2.5.1 Experiment

An experiment was designed to find out whether and how irrigation influences the yield
of sugar beets. Seven different amounts of water (from 0 up to 250 mm) applied on four
plots respectively. The real amount of water varies slightly and Data 9.1 considers only
real values (Collins and Seeney, 1999, p. 207f, Dataset was read from figure 6.57 and
might therefore differ from the original data.).

9.2.5.2 Statistical Analysis

The dataset is read from a *.txt file in flat file format. One column contains the irrigation,
the other column contains the sugar beet yield.

> beets <- read.table(file = "../text/beets.txt", sep = "\t",

+ header = TRUE)

> plot(yield~water, data = beets, col = "turquoise3",

+ xlab = "irrigation (mm)", ylab = "yield (t/ha)",

+ main = "Sugar Beet Irrigation")

A linear regression model is created with lm():

> beetmodel <- lm(formula = yield~water, data = beets)

abline() applied on this linear model fits a regression line to the scatter plot (see figure
9.1).

> abline(reg = beetmodel, col = "turquoise4")

9.2.5.3 Analysis of Residuals Residuals represent
the term of error in
a regression model!The following plot is created for the graphical analysis of residuals (figure 9.2):

> fitted.values <- fitted(object = beetmodel)

> resid.values <- resid(object = beetmodel)

> plot(x = fitted.values, y = resid.values, col = "turquoise3")

> abline(h = 0, col = "turquoise4")

In addition, the QQ-Plot might be used (figure 9.3):

> resid.values <- resid(object = beetmodel)

> qqnorm(y = resid.values, col = "black")

> qqline(y = resid.values, col = "turquoise4")
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Figure 9.1: Scatterplot of sugar beet data with a fitted regression line.

Both graphs accompanied by a Scale-Location and Cook’s Distance Plot are created when
the linear model is plotted (figure 9.4):

> plot(beetmodel, col = "turquoise3")

4 The number of predicting values is 7 > 2.

4 The number of repetitions counts four for each predicting value (this is greater
than three values for the complete regression).

4 Homogeneity of variances for the residuals is accepted (figure 9.2).

4 An approximate normal distribution of the residuals is given in figures 9.2 and
9.3).

=⇒ Linear Regression.

> summary(object = beetmodel)

Call:

lm(formula = yield ~ water, data = beets)

Residuals:

Min 1Q Median 3Q Max

-3.2555 -0.8490 -0.0286 0.6604 2.6004
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Figure 9.2: Residuals for sugar beet regression model.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.255531 0.505482 24.245 <2e-16 ***

water 0.026881 0.003261 8.244 1e-08 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.407 on 26 degrees of freedom

Multiple R-squared: 0.7233, Adjusted R-squared: 0.7127

F-statistic: 67.97 on 1 and 26 DF, p-value: 1.002e-08

9.2.5.4 Interpretation

Call:

lm(formula = yield ~ water, data = beets)

The calculated linear model is printed.

Residuals:

Min 1Q Median 3Q Max

-3.25553 -0.84896 -0.02857 0.66045 2.60041

This table gives information about the distribution of residuals in a very compact form. A
linear regression created with lm() is only accepted if the residuals are normal distributed.
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Figure 9.3: QQ-plot of sugar beet data model residuals.

That means the minimum and maximum should have roughly the same absolute value
and the median is supposed to be close to zero. This is the case for the sugar beet
example.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.255531 0.505482 24.245 < 2e-16 ***

water 0.026881 0.003261 8.244 1.00e-08 ***

Estimate – (Intercept) indicates the intercept, water the slope for the fitted regression
line. The mathematical function is therefore:

y = 12.255531 + 0.026881x

Std. Error indicates the standard error for intercept and slope, t value presents the
test statistic and Pr(>|t|) holds the p-value. In this example, intercept and slope are
highly significant with an error probability of 5%.

Residual standard error: 1.407 on 26 degrees of freedom

This statement is an expression for the variation of the residuals around the regression
line.

Multiple R-Squared: 0.7233, Adjusted R-squared: 0.7127
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Figure 9.4: Graphs created by plot(beetmodel).
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R2 represents the squared correlation coefficient according to Pearson (R2 = r2). The
adjusted R2 might be interpreted as reduction of variance in percentage.

F-statistic: 67.97 on 1 and 26 DF, p-value: 1.002e-08

Fertilizer
(lb/acre)

Yield

100 24
100 35
100 42
100 47
100 55
200 31
200 40
200 50
200 54
200 61
300 37
300 43
300 53
300 55
300 62
400 47
400 53
400 62
400 70
400 74
500 52
500 61
500 65
500 70
500 80
600 63
600 68
600 74
600 80
600 90
700 67
700 74
700 80
700 84
700 93

Data 9.2: Yield of
bread wheat dependent
on different amounts of
fertilizer.

The F-test is calculated for the hypothesis that the regression coefficient equals zero. In
this case, the test is not of interest because it duplicates information which is already
present. The result is more interesting when a regression model contains more than one
influencing variable.

The starcode shows the kept level of significance for each estimate ”at one glance”:

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

One star says ”p-value smaller 0.05”, two stars express ”p-value smaller than 0.01” et
cetera.

9.2.5.5 Confidence and Prediction Bands
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Figure 9.5: Illustration of confidence- and prediction bands for the sugar beet regression.
The wide lines are prediction bands while the closer lines represent the confidence bands.

predict() allows the calculation of predicting data for a linear model. The parameter
interval specifies the kind of confidence values: confidence stands for bands which
include the regression line with a probability of 95%. The option prediction creates
confidence data for prediction bands include the majority of all observations and show
the confidence for the prediction of exact values in the future, based on this regression
model.
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Figure 9.5 shows the confidence and prediction bands:

> pp <- predict.lm(object = beetmodel, interval = "prediction",

+ data = beets$water)

> pc <- predict.lm(object = beetmodel, interval = "confidence",

+ data = beets$water)

matlines() plots the confidence bands:

> plot(x = beets$water, y = beets$yield, ylim = range(beets$yield, pc),

+ col = "turquoise3", xlab = "irrigation (mm)", ylab = "yield (t/ha)",

+ main = "Confidence and Prediction Bands")

> matlines(x = beets$water, y = pp, tly = c(1,3), col = "magenta3")

> matlines(x = beets$water, y = pc, tly = c(1,2,3), col = "steelblue")

tly indicates which columns of the predict-table are plotted.

9.2.6 Example Bread Wheat

9.2.6.1 Experiment

An experiment was designed to investigate the influence of different amounts of fertilizer
on the yield of bread wheat. Concentrations of 100, 200, 300, 400, 500, 600 and 700 lb
fertilizer/acre were applied on five randomly chosen plots respectively (Data 9.2) (Won-
nacott and Wonnacott, 1990, p. 359, data was read from figure 11-1, it might slightly
differ from the original data.).

9.2.6.2 Statistical Analysis

> wheat <- read.table(file = "../text/wheat.txt", header = TRUE,

+ sep = "\t")

> plot(yield~fertilizer, data = wheat, col = "turquoise3",

+ xlab = "Fertilizer (lb/acre)",

+ main = "Wheat Yield in a Fertilizer Experiment")

lm() fits a linear regression model:

> wheatmodel <- lm(formula = yield~fertilizer, data = wheat)

abline() adds a fitted regression line to the scatterplot (figure 9.6):

> abline(reg = wheatmodel, col = "turquoise4")

A boxplot is created for checking the normal distribution of the residuals (figure 9.7):

> resid.values <- resid(object = wheatmodel)

> boxplot(x = resid.values, col = "turquoise3",

+ main = "Boxplot of Residuals")

Homogeneity of variances cannot be obtained from a boxplot. Therefore, a Levene test is
accomplished. The package car has to be installed (add-on) and loaded with library()

for the usage of leveneTest()!
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Figure 9.6: Yield of bread wheat dependent on the amount of fertilizer applied to the
plot (lb/acre).

> library(car)

> lev <- data.frame(res = resid.values,

+ group = as.character(wheat$fertilizer))

> leveneTest(y = lev$res, group = lev$group)

Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)

group 6 0.0623 0.9989

28

4 The number of predicting values is seven (> 2).

4 Five repetitions for each x-value fulfill the requirement of at least three repetitions
over all predictors.

4 Homogeneity of variances is assumed due to a non significant Levene test result.

4 The residuals are approximately normal distributed (figure 9.7).

=⇒ wheatmodel is fitting well for the regression analysis of bread wheat data.

> summary(object = wheatmodel)

Call:

lm(formula = yield ~ fertilizer, data = wheat)
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Figure 9.7: Boxplot of residuals for an investigation of distribution.

Residuals:

Min 1Q Median 3Q Max

-16.1643 -6.6643 0.6714 7.4179 16.6714

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 33.000000 3.822172 8.634 5.60e-10 ***

fertilizer 0.067214 0.008547 7.864 4.57e-09 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 10.11 on 33 degrees of freedom

Multiple R-squared: 0.6521, Adjusted R-squared: 0.6415

F-statistic: 61.85 on 1 and 33 DF, p-value: 4.574e-09

9.2.6.3 Interpretation

The mathematical equation is:

y = 0.067214x+ 33

The intercept as well as the slope are highly significant to a confidence level of 95%.
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. Exercise 10 sulphur
(pound/
acre)

scab
(%)

0 18
0 30
0 24
0 29

300 9
300 9
300 16
300 4
600 18
600 10
600 18
600 16
1200 4
1200 10
1200 5
1200 4

Data 10.3: Sulphur
treatment of potato
scab.

Sulphur is efficiently used fighting potato scab. Researchers investigated the effect of
different sulphur concentrations on the plant disease. Four concentrations (0, 300, 600
and 1200 pounds/acre) have been applied on four plots respectively. The sum of surface
damage by scab has been counted for 100 randomly chosen potatoes from each plot
(Data 10.3) (Pearce, 1983, p. 46, Data is not complete, the actual experiment included
observations in spring and fall.), original experiment published in Cochran and Cox
(1950).

Are the given data fitting for a regression analysis with the linear model? Are the residuals
normal distributed?

If so, which are intercept and slope? Is the regression significant with an error probability
of 5%?

Plot confidence and prediction bands!
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Chapter 10

ANOVA

10.1 Assumptions

Analysis of variances (ANOVA) is used to investigate the effect of one or several categor-
ical predicting variables on one or several random variables, e.g. the influence of different
fertilizers and varieties on the variable yield. The ANOVA is not significant when the
variances are overlapping each other.

Example for a model – two-factorial ANOVA with interaction:

Yijk = µ+ αi + βj + (αβ)ij + εijk

Yijk is the random response variable, µ represents the expected value, αi stands for the
effect of the ith level of factor A, βj is the effect of the jth level of factor B, (αβ)ij
represents the interaction, εijk stands for the experimental error, k is the number of
repetitions.

Assumptions for an ANOVA are:

• Normal distribution of εijk within the respective groups → Plot of residuals,
dots should be normal distributed above and below the zero-line for all categories.
A boxplot might serve this purpose as well.

• Homogeneity of variances of the residuals → Levene-test and/or plot of resid-
uals/boxplot.

• Independent data.

An example for the hypotheses of an experiment with three levels of factor A and two
levels of factor B is given below:

∃ is read as there ex-
ists.

H1
0 : µA1 = µA2 = µA3 H2

0 : µB1 = µB2

H1
1 : ∃ at least one µAi

6= µAj
H2

1 : µB1 6= µB2

10.2 Implementation

10.2.1 Extension for the Function lm()

An introduction to lm() is given in section 9.2.1. The formula-construct for ANOVA is
written as follows:
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> lm(formula = target~treatment.1+treatment.2+treatment.1:treatment.2,

+ data = dataset)

Influencing variables are combined with + while : forms an interaction term.

10.2.2 The Function anova()

anova() calculates the table of variances.

anova(object, ...)

object is a linear model. This model can either be saved in an object and used as
anova(objectname) or it might be integrated into the function, directly: anova(lm(...)).

10.2.3 Example Corn

10.2.3.1 Experiment

Do methods of biological plant protection reduce the effect of insects on corn ears effi-
ciently? Researchers compared the ear weight of corn for five different biological treat-
ments: the beneficial nematode Steinernema carpocapsae, the wasp Trichogramma pre-
tiosum, a combination of those first two, the bacterium Bacillus thuringiensis and a non
treated control group. Ears of corn were randomly sampled from each plot and weighed
(table 10.1) (Martinez, 1998) cited according to Samuels and Witmer (2003, p. 463f,
the data presented here are a random sample from a larger study.).

Nematode Wasp Nematode
& Wasp

Bacterium Control

16.5 11.0 8.5 16.0 13.0
15.0 15.0 13.0 14.5 10.5
11.5 9.0 12.0 15.0 11.0
12.0 9.0 10.0 9.0 10.0
12.5 11.5 12.5 10.5 14.0
9.0 11.0 8.5 14.0 12.0
16.0 9.0 9.5 12.5 11.0
6.5 10.0 7.0 9.0 18.5
8.0 9.0 10.5 9.0 9.5
14.5 8.5 10.5 9.0 17
7.0 8.0 13.0 6.5 10.0
10.5 5.0 9.0 8.5 11.0

Table 10.1: Weight of corn ears (ounces).

10.2.3.2 Statistical Analysis

> corn <- read.table(file = "../text/corn.txt", sep = "\t",

+ header = TRUE)

Data is visualized in boxplots (figure 10.1):

> boxplot(formula = response~treatment, data = corn, col = "white",

+ main = "Plot of the Corn Data", ylab = "weight (ounces)",

+ names = c("nem","wasp","nem+wasp","bac","control"))
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10.2. IMPLEMENTATION CHAPTER 10. ANOVA

This experiment includes only one influencing factor. Therefore, the linear model neither
contains additive factors nor an interaction:

> corn.model <- lm(formula = response~treatment, data = corn)

Graphical visualization of the residuals for corn.model (figure 10.2):

> fitted.values <- fitted(object = corn.model)

> resid.values <- resid(object = corn.model)

> plot(x = fitted.values, y = resid.values, col = "black")

> abline(h = 0, col = "blue4")

A boxplot might also help during the investigation of the distribution (figure. 10.3):

> boxplot(x = resid.values, col="white", main="Residuals")

●
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nem wasp nem+wasp bac control
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Figure 10.1: Plot of corn data.

A Levene test is used for verification of homogeneity in variances of the residuals (package
car needs to be installed and loaded!):

> library(car)

> lev <- data.frame(res = resid.values, group = corn$treatment)

> leveneTest(y = lev$res, group = lev$group)

Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)

group 4 1.1028 0.3645

55
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Figure 10.2: Residual plot of corn.model for an evaluation of normal distribution.

The null hypothesis - homogeneity of variances - is not rejected.

4 Homogeneity of variances (Levene test).

4 Normal distribution of residuals (figure 10.2 and 10.3).

4 Independent data.

=⇒ ANOVA with one factor. Hypotheses:

H0 : µnem = µwasp = µnem+wasp = µbac = µcontrol

H1 : ∃ at least one µtreatment 6= µtreatment′

> anova(object = corn.model)

Analysis of Variance Table

Response: response

Df Sum Sq Mean Sq F value Pr(>F)

treatment 4 52.31 13.0771 1.6461 0.1758

Residuals 55 436.94 7.9443

10.2.3.3 Interpretation

First of all, the variance table’s header and the response variable are displayed.
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Figure 10.3: Boxplot of residuals.

Df Sum Sq Mean Seq F value Pr(>F)

treatment 4 52.31 13.08 1.6461 0.1758

Residuals 55 436.94 7.94

The first column names the rows for the predictor treatment and the Residuals. Df

presents the degrees of freedom while Sum Sq gives the sums of squares for treatment
and residuals, Mean Sq gives the mean squares and the F-value returns the test statistic
(which is the mean square for the factor divided by the mean square for the error) .
The p-value is given in the column Pr(>F). For this model, the p-value is greater than
0.05 which leads to the conclusion that the null hypothesis (no difference in biological
treatments) is kept: It was not possible to verify a significant difference in yield for
different biological treatments for a confidence level of 0.95.

10.2.4 Example Soybeans (3)

10.2.4.1 Experiment

”A plant physiologist investigated the effect of mechanical stress on the growth of soybean
plants. Individually potted seedlings were randomly allocated to four treatment groups of
13 seedlings each. Seedlings in two groups were stressed by shaking for 20 minutes twice
daily, while two control groups were not stressed. Thus, the first factor in the experiment
was presence or absence of stress with two levels. Also, plants were grown in either low
or moderate light” =⇒ second factor. The leaf areas of each plant are given in table 10.2
(Pappas and Mitchell, 1984), rawdata published in Samuels and Witmer (2003, p. 491,
the author indicates that the original experiment contained more than four treatments.).
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10.2.4.2 Statistical Analysis

Control Stress Control Stress
Low Light Low Light Moderate Light Moderate Light

264 235 314 283
200 188 320 312
225 195 310 291
268 205 340 259
215 212 299 216
241 214 268 201
232 182 345 267
256 215 271 326
229 272 285 241
288 163 309 291
253 230 337 269
288 255 282 282
230 202 273 257

Table 10.2: Leaf area (cm2) of the soybean plants.

> soybeans <- read.table(file = "../text/soybeans.txt", sep = "\t",

+ header = TRUE)

The linear model considers the influence of light and stress as well as an interaction term
on the leaf area of soybean plants:

> model <- lm(formula = response~treatment.B+treatment.A+treatment.A:

+ treatment.B, data = soybeans)

Graphical visualization of residuals (figure 10.4):

> fitted.values <- fitted(object = model)

> resid.values <- resid(object = model)

> plot(x = fitted.values, y = resid.values, col = "black")

> abline(h = 0, col = "blue4")

Levene test for verification of the residual’s homogeneity of variances for the different
groups:

> library(car)

> lev <- data.frame(res = resid.values, group = rep(c("low.light.c",

+ "low.light.s","mod.light.c","mod.light.s"), each = 13))

> leveneTest(y = lev$res, group = lev$group)

Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)

group 3 0.1963 0.8984

48

The p-value is greater 0.05. Therefore, the null hypothesis (homogeneity of variances) is
not rejected.

4 Homogeneity of variances of the residuals (Levene test).
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Figure 10.4: Residual plot of soybean data.

4 Approximate normal distribution of residuals (figure 10.4).

4 Independent data (randomized groups).

=⇒ Analysis by ANOVA. Question: Does mechanical stress and different levels of light
lead to at least one difference between the experiment groups? Hypotheses (including
the interaction):

HA
0 : µstress = µnostress HB

0 : µlight = µdark
HA

1 : µstress 6= µnostress HB
1 : µlight 6= µdark

HA′B
0 : µstressfactor,lightfactor = µstressfactor + µlightfactor − µ

HA′B
1 : µstressfactor,lightfactor 6= µstressfactor + µlightfactor − µ

> anova(object = model)

Analysis of Variance Table

Response: response

Df Sum Sq Mean Sq F value Pr(>F)

treatment.B 1 14858 14858 16.5954 0.0001725 ***

treatment.A 1 42752 42752 47.7490 1.01e-08 ***

treatment.B:treatment.A 1 26 26 0.0294 0.8645695

Residuals 48 42976 895

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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10.2.4.3 Interpretation

The table of variances (Interpretation instructions are given in the previous example)
shows that the factors light treatment and seismic stress have a significant influence
on the leaf area of soybean seedlings. There exists no significant interaction. In this
experiment, it can be seen ”at one glance” where the differences between the groups are
located because there are only two respective levels.

10.2.5 Example Alfalfa

10.2.5.1 Experiment

”Researchers were interested in the effect that acid rain has on the growth rate of alfalfa
plants. They created three treatment groups in an experiment: low acid, high acid and
control. The response variable in their experiment was the average height of the alfalfa
plants in a Styrofoam cup after five days of growth. (The observational unit was a cup,
rather than individual plants.) They had 5 cups for each of the 3 treatments, for a total
of 15 observations. However, the cups were arranged near a window and they wanted to
account for the effect of differing amounts of sunlight. Thus, they created 5 blocks and
randomly assigned the 3 treatments within each block”, as shown in table 10.3. The data
is given in table 10.4 (Neumann et al., 2001) cited according to Samuels and Witmer
(2003, pp. 487).

Block 1 Block 2 Block 3 Block 4 Block 5

win high control control control high
d control low high low low

ow low high low high control

Table 10.3: Block design of an alfalfa experiment.

Low acid High Acid Control

Block 1 1.58 1.10 2.47
Block 2 1.15 1.05 2.15
Block 3 1.27 0.50 1.46
Block 4 1.25 1.00 2.36
Block 5 1.00 1.50 1.00

Table 10.4: Alfalfa data: Height of plants for each cup after 5 days measured in cm.

10.2.5.2 Statistical Analysis

> alfalfa <- read.table(file = "../text/alfalfa.txt", sep = "\t",

+ header = TRUE)

A linear model accounting for the acid treatment and the block design:

> alfalfa.model <- lm(formula = height~acid+block, data = alfalfa)

Boxplot of residuals (figure 10.5):

> resid.values <- resid(object = alfalfa.model)

> boxplot(x = resid.values, col = "white", main="Residuals")
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Figure 10.5: Boxplot of residuals for alfalfa.model.

Levene test for the verification of homogeneity of variances within the residuals:

> library(car)

> lev <- data.frame(res = resid.values, group = alfalfa$acid)

> leveneTest(y = lev$res, group = lev$group)

Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)

group 2 1.7928 0.2083

12

4 Homogeneity of variances (Levene test with a p-value greater than 0.05, null-
hypothesis is kept).

4 Approximate normal distribution of residuals (figure 10.5).

4 Independent data (randomized block design).

=⇒ ANOVA with the following hypotheses:

H1
0 : µlow = µhigh = µcontrol

H1
1 : ∃ at least one µacid 6= µacid′

H02 : µblock1 = µblock2 = µblock3 = µblock4 = µblock5

H2
1 : ∃ at least one µblock 6= µblock′

> anova(object = alfalfa.model)
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Analysis of Variance Table

Response: height

Df Sum Sq Mean Sq F value Pr(>F)

acid 2 1.98601 0.99301 5.5066 0.02202 *

block 1 0.30805 0.30805 1.7083 0.21787

Residuals 11 1.98363 0.18033

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The table of variances shows that acid influences the height of alfalfa plants significantly
with an error probability of 5%. The exact location of the difference cannot be ob-
tained from an ANOVA because there are three treatments compared with each other.
A multiple comparison test as described in the next chapter might solve this problem.

10.2.6 Example Cress (1)

10.2.6.1 Experiment

A student experiment was designed to investigate the influence of different light qualities
on the growth rate of cress (Lepidium sativum). Six new lamps accompanied by the
SON-T lamp (widely used in horticulture) were compared. 15 plants were randomly
chosen from three blocks per lamp type and the fresh weight was measured after eight
days (Norlinger and Hoff, 2004), data is printed in appendix B.

10.2.6.2 Statistical Analysis

ANOVA is chosen to analyse whether there exists a significant difference in weight at
different light treatments.

> cress <- read.table("../text/cress.txt", sep="\t", dec = ",",

+ header = TRUE)

The linear model accounts for the influence of light and block on the fresh weight. The
residuals are plotted in figure 10.6 (approximate normal distribution).

> cress.model <- lm(formula = weight~light+block, data = cress)

> fitted.values <- fitted(object = cress.model)

> resid.values <- resid(object = cress.model)

> plot(x = fitted.values, y = resid.values, col = "black")

> abline(h = 0, col = "blue4")

> library(car)

> lev <- data.frame(res = resid.values, group = cress$light)

> leveneTest(y = lev$res, group = lev$group)

Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)

group 5 1.5068 0.1879

264

The Levene test shows that the null hypothesis of homogeneity in variances is not rejected
to an error probability of 5%.
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Figure 10.6: Residual plot of cress.model for a conclusion about the normal distribution.

4 Homogeneity in variances of residuals (Levene test).

4 Approximate normal distribution of residuals (figure 10.6).

4 Independency of data is assumed.

=⇒ ANOVA with the hypotheses:

H1
0 : µred = µdaylight = µSONT

= µwhite = µblue = µgreen
H1

1 : ∃ at least one µlighti 6= µlightj
H2

0 : µblock1 = µblock2 = µblock3
H2

1 : ∃ at least one µblocki 6= µblockj

> anova(object = cress.model)

Analysis of Variance Table

Response: weight

Df Sum Sq Mean Sq F value Pr(>F)

light 5 0.00015253 3.0506e-05 2.9121 0.01409 *

block 2 0.00002469 1.2347e-05 1.1787 0.30931

Residuals 262 0.00274459 1.0475e-05

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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10.2.6.3 Conclusion

With an error probability of 5%, there exists at least one significant difference in the
fresh weight of cress plants. No significant block influence was obtained.

A multiple comparison test will be used in section 11.2.5 to investigate the location of
the difference(s).

. Exercise 11

A petroleum gel was applied on Cherry Laurel leaves in order to investigate the effect on
leaf transpiration. 16 leaves were chosen and divided randomly in four groups. The first
group served as a control while gel was applied on the top side of leaves in the second
group, on the lower side of leaves in the fourth group and on both sides of leaves in the
third group. The weight of each leaf was measured. The leaves were hanging at a shady
place with good air circulation for three days and the weight was measured afterwards,
again. The loss of water is presented in table 10.5 (Bishop, 1980, p. 56).

Control Top Bottom Both

86 41 25 13
108 44 35 11
118 40 37 13
79 52 26 13

Table 10.5: Lost of water in Cherry Laurel leaves ( mgcm3 ) during three days.

Is the data obtained by this experiment suiting for analysis of variances? If so, formulate
the hypotheses and do an ANOVA!
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Chapter 11

Multiple Comparison Tests

11.1 Assumptions

ANOVA looks for ”at least one” significant difference within several levels (treatments).
On the other hand, Multiple Comparison Tests (MCP) check the pairwise differences of
all indicated groups and show the exact locations. (ANOVA might be used as a pre-test
for an MCP but this is not a necessity. If the ANOVA displays a significant interaction,
the postulated independency is no longer granted. In this case, the pairwise differences
for one factor are calculated for each level of the other factor!)

In principle, MCPs are based on the same assumptions as a common t-Test. Important
are:

• Normal distribution within the respective groups (boxplots).

• Homogeneity of variances between the different treatments (Levene test, box-
plots)

• Independency of data e.g. no significant interaction in ANOVA, in addition see
chapter 5.

11.1.1 Tukey-Procedure

The ”all pairs comparison” according to Tukey compares all groups with each other.

11.1.2 Dunnett-Procedure

The ”many to one” comparison according to Dunnett compares all groups to one single
group, usually the control.

11.2 Implementation

The packages for multiple comparison procedures are currently not included in the R
base installation. Therefore, mvtnorm and multcomp have to be installed and loaded
with library().
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11.2.1 The Function glht()

glht() is the abbreviation for general linear hypothesis. Among other purposes, this
function can be used to do multiple comparison of means tests.

glht(model, lnfct = mcp(grouping.varitable = c("Dunnett", "Tukey"),

alternative=c("two.sided","less", "greater"))

model is a model that for the purpose of comparing means was e.g. composed using
aov().

linfct allows to specify the hypothesis. This can be done by specifying e.g. a contrast
matrix. If you do not want to bother learning details about contrast matrices, you can
use the function mcp to compose a contrast matrix automatically. In this case, group-
ing.variable must be the name of the variable that was used as a grouping variable
in model. (Tukey and Dunnett are not the only available contrast matrices, consult the
help page of mcp for further options.)

type specifies whether a procedure according to Dunnett or Tukey is calculated. (There

Variety Yield

A 25.12
A 17.25
A 26.42
A 16.08
A 22.15
A 15.92
B 40.25
B 35.25
B 31.98
B 36.52
B 43.32
B 37.10
C 18.30
C 22.60
C 25.90
C 15.05
C 11.42
C 23.68
D 28.55
D 28.05
D 33.20
D 31.68
D 30.32
D 27.58

Data 11.1: A melon ex-
periment.

are more methods available which are not discussed here!)

alternative should be known from other tests, now. It specifies whether a one- or
two-sided test is calculated.

11.2.2 The Function confint()

Confidence intervals are calculated by a separate function called confint().

confint(object, level=0.95)

object is the output of glht.

level sets the confidence level. The default value is 95%.

11.2.3 The Function summary()

summary() applied on an object containing the output of glht() returns the detailed
test results.

> summary(object)

11.2.4 Example Melons (1)

11.2.4.1 Experiment

The yield of four different melon varieties was compared in an experiment. Each variety
was planted in six completely randomized blocks (Data 11.1) (Mead et al., 2003, p. 58).

11.2.4.2 Statistical Analysis

> melon <- read.table(file = "../text/melon.txt", sep = "\t",

+ header = TRUE)
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Figure 11.1: Boxplots of melon data.

A boxplot serves the determination of normal distribution and homogeneity in variances
of all groups (figure 11.1):

> boxplot(formula = yield~variety, data = melon, col = "white",

+ main = "Melon Data", ylab = "yield")

Implementation of the Levene test for a verification of homogeneity in variances:

> library(car)

> leveneTest(y = melon$yield, group = melon$variety)

Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)

group 3 2.0901 0.1337

20

4 Approximate normal distribution is accepted (figure 11.1).

4 Homogeneity of variances is assumed (Levene test and figure 11.1).

=⇒ Data is suiting for the evaluation with a MCP. The question is whether there is a
difference between all groups. No control has been nominated =⇒ Tukey procedure. For
the reason that no tendency is known, a two-sided test is calculated. Hypotheses:
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H0: µA = µB = µC = µD
H1: µA 6= µB

µA 6= µC
µA 6= µD
µB 6= µC
µB 6= µD
µC 6= µD

11.2.4.3 The Implementation of glht()

glht() and summary() are used to compute p-values:

> library(mvtnorm)

> library(multcomp)

> melon.model <- aov(formula = yield~variety, data = melon)

> mcmp <- glht(melon.model, linfct = mcp(variety = "Tukey"))

> summary(mcmp)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = yield ~ variety, data = melon)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

B - A == 0 16.9133 2.4754 6.833 < 0.001 ***

C - A == 0 -0.9983 2.4754 -0.403 0.97721

D - A == 0 9.4067 2.4754 3.800 0.00569 **

C - B == 0 -17.9117 2.4754 -7.236 < 0.001 ***

D - B == 0 -7.5067 2.4754 -3.033 0.03088 *

D - C == 0 10.4050 2.4754 4.203 0.00242 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Adjusted p values reported -- single-step method)

Below the heading of the output, you see the type of contrast that was used. Subse-
quently, the anova model is printed. The first column of the output table contains the
corresponding pair-hypothesis. The second column contains the estimate for the differ-
ence in mean between the two samples. The column Std. Error returns the standard
deviation between estimate and true values. The column p value states multiplicity
adjusted p values.

The results are interpreted as usual: if the p-value is smaller than or equal to 0.05, the
alternative hypothesis is accepted with an α-error of 5%. In this particular case, the
samples A and B, A and D, B and C, B and D, C and D are significantly different.

11.2.4.4 The Implementation of confint

The implementation of confint() creates multiplicity adjusted confidence intervals:

> melon.int <- confint(mcmp)

> melon.int
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Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = yield ~ variety, data = melon)

Quantile = 2.7981

95% family-wise confidence level

Linear Hypotheses:

Estimate lwr upr

B - A == 0 16.9133 9.9870 23.8397

C - A == 0 -0.9983 -7.9247 5.9280

D - A == 0 9.4067 2.4803 16.3330

C - B == 0 -17.9117 -24.8380 -10.9853

D - B == 0 -7.5067 -14.4330 -0.5803

D - C == 0 10.4050 3.4787 17.3313

11.2.4.5 Interpretation

The header is followed by the called test type and model. The subsequent table contains
the lower (lwr) and upper (upr) boundaries of multiplicity adjusted confdence intervals
for each pair of samples.

11.2.4.6 Plotting of Confidence Intervals

It is very easy to plot the confidence intervals with plot(confint()) (figure 11.2):

> plot(x = melon.int, col = "purple")

11.2.4.7 Conclusion

The question was whether and where significant differences in means are located (with
an error probability of 5%). The simultaneous confidence intervals show that variety A
differs significantly in yield from the varieties B and D. Furthermore, variety B differs
significantly from variety C and D and variety C and D differ also. This result is congruent
with the p-values adjusted according to Bonferroni.

A new question arises: Which variety has the highest yield? This can be read from the
confidence intervals without calculating further tests. The positive confidence intervals
might be read as greater than and the negative ones might be read as smaller than. This
leads to the following conclusion:

B > A, D > A, D > C, C < B and D < B.

A significance for those hypotheses for an confidence level of 95% is kept because the
p-values will be divided by two for a one-sided test and that means they are smaller than
0.05, anyway.

This leads to the conclusion that variety B has the highest yield.

However, it is possible to calculate a new one-sided test with new confidence intervals for
this purpose, of course.
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Figure 11.2: Confidence intervals for a Tukey test calculated for the melon experiment.

11.2.5 Example Cress (2)

In section 10.2.6, the conclusion from an ANOVA was that different light qualities affect
the fresh weight of cress plants. An MCP according to Tukey is used to locate the
difference(s).

The normal distribution of the cress data is determined with boxplots (figure 11.3) and
a Levene test is calculated additionally to verify the homogeneity in variances between
the different groups:

> boxplot(formula = weight~light, data = cress, col = "white",

+ main = "Cress Data", ylab = "fresh weight (mg)")

> library(car)

> leveneTest(y = cress$weight, group = cress$light)

Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)

group 5 1.8985 0.09489 .

264

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

4 Due to outliers in figure 11.3, approximate normal distribution is accepted con-
ditionally, only.

4 The hypothesis about homogeneity of variances is kept to a confidence level of
95% → homogeneity in variances.
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Figure 11.3: Boxplots of cress data for the determination of normal distribution and
homogeneity in variances.

4 Data is independent, completely randomized experiment.

The two-sided MCP according to Tukey contains the following hypotheses:

H0: µred = µblue = µgreen = µwhite = µdaylight = µSON−T
H1: µred 6= µblue

µred 6= µgreen
µred 6= µwhite
µred 6= µdaylight
µred 6= µSON−T
µblue 6= µgreen
µblue 6= µwhite
µblue 6= µdaylight
µblue 6= µSON−T
µgreen 6= µwhite
µgreen 6= µdaylight
µgreen 6= µSON−T
µwhite 6= µdaylight
µwhite 6= µSON−T
µdaylight 6= µSON−T

> library(mvtnorm)

> library(multcomp)

> cress.model <- aov(formula = weight~light, data = cress)

> cress.test <- glht(cress.model, linfct = mcp(light = "Tukey"))

> summary(cress.test)
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Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = weight ~ light, data = cress)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

daylight - blue == 0 0.0013156 0.0006828 1.927 0.3883

green - blue == 0 0.0022022 0.0006828 3.225 0.0177 *

red - blue == 0 0.0006711 0.0006828 0.983 0.9231

SON-T - blue == 0 0.0020067 0.0006828 2.939 0.0413 *

white - blue == 0 0.0011356 0.0006828 1.663 0.5575

green - daylight == 0 0.0008867 0.0006828 1.299 0.7857

red - daylight == 0 -0.0006444 0.0006828 -0.944 0.9347

SON-T - daylight == 0 0.0006911 0.0006828 1.012 0.9136

white - daylight == 0 -0.0001800 0.0006828 -0.264 0.9998

red - green == 0 -0.0015311 0.0006828 -2.242 0.2221

SON-T - green == 0 -0.0001956 0.0006828 -0.286 0.9997

white - green == 0 -0.0010667 0.0006828 -1.562 0.6242

SON-T - red == 0 0.0013356 0.0006828 1.956 0.3706

white - red == 0 0.0004644 0.0006828 0.680 0.9840

white - SON-T == 0 -0.0008711 0.0006828 -1.276 0.7980

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Adjusted p values reported -- single-step method)

According to the multiplicity adjusted p-value, there exists a significant difference be-
tween green and blue as well as between blue and SON-T light treatment in the dry
weight with an error probability of 5%.

11.2.5.1 Further Investigations

Previous research concluded that blue light affects the stem elongation negatively in
comparison to e.g. red light. Therefore, a blue light treatment results usually in a more
compact plant growth and a slightly reduced fresh weight for certain species. Can this
be applied on cress? A one-sided seceding test according to Dunnett (control blue):

> cress.test <- glht(cress.model, linfct = mcp(light="Dunnett"),

+ alternative = "greater")

> summary(cress.test)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts

Fit: aov(formula = weight ~ light, data = cress)

Linear Hypotheses:

Estimate Std. Error t value Pr(>t)

daylight - blue <= 0 0.0013156 0.0006828 1.927 0.09934 .

green - blue <= 0 0.0022022 0.0006828 3.225 0.00321 **
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red - blue <= 0 0.0006711 0.0006828 0.983 0.42229

SON-T - blue <= 0 0.0020067 0.0006828 2.939 0.00778 **

white - blue <= 0 0.0011356 0.0006828 1.663 0.16238

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Adjusted p values reported -- single-step method)

With an error probability of 5%, plants treated with green and SON-T light have a
significantly higher fresh weight than cress plants treated with blue light. This is only
partly congruent with previous research results about the effect of light quality on stem
elongation.

11.2.6 Example Fertilizer

11.2.6.1 Experiment

Twelve plots were randomly divided in three groups. The first two groups were treated
with the fertilizer A and B while the third group was kept as an untreated control (table
11.1) (Wonnacott and Wonnacott, 1990, p. 334).

Fertilizer A Fertilizer B Control C

75 74 60
70 78 64
66 72 65
69 68 55

Table 11.1: Yield dependent on different fertilizers.

11.2.6.2 Analysis

> fertilizer <- read.table(file = "../text/fertilizer.txt", sep = "\t",

+ header = TRUE)

Normal distribution and homogeneity of variances are obtained from boxplot figure 11.4
and a Levene test:

> boxplot(formula = yield~fertilizer, data = fertilizer, col = "white",

+ main = "Fertilizer Data")

> library(car)

> leveneTest(y = fertilizer$yield, group = fertilizer$fertilizer)

Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)

group 2 0.1765 0.8411

9

4 Data is approximately normal distributed (figure 11.4).

4 Homogeneity of variances is concluded from a non significant Levene test and
the boxplots.

4 Independent data: randomized block design.
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Figure 11.4: Boxplots for fertilizer data.

The question in this experiment is whether the two fertilizers differ significantly from the
control. Therefore, a one-sided acceding test with the following hypotheses is calculated:

H0 : µC ≥ µA
µC ≥ µB

H1 : µC < µA
µC < µB

> fert.model <- aov(formula = yield~fertilizer, data = fertilizer)

> fert.test <- glht(fert.model, linfct = mcp(fertilizer = "Dunnett"),

+ alternative = "greater")

> summary(fert.test)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts

Fit: aov(formula = yield ~ fertilizer, data = fertilizer)

Linear Hypotheses:

Estimate Std. Error t value Pr(>t)

B - A <= 0 3.000 2.944 1.019 0.265

C - A <= 0 -9.000 2.944 -3.057 0.999

(Adjusted p values reported -- single-step method)

With an error probability of 5%, both fertilizers increase the yield highly significant.
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11.2.7 Example Melons (2)

The registration of new varieties is based on the fact that the new variety is better than
already existing varieties in at least on criterion.

Using the data of section 11.2.4, I assume that A is a new variety that has to be compared
to the already existing varieties B, C and D. A one-sided acceding MCP with Dunnett

procedure is calculated. The implementation equals the description in section 11.2.4
except that type is set on Dunnett.

> melon.model <- aov(formula = yield~variety, data = melon)

> mcmp <- glht(melon.model, linfct = mcp(variety = "Dunnett"),

+ alternative = "greater")

> summary(mcmp)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts

Fit: aov(formula = yield ~ variety, data = melon)

Linear Hypotheses:

Estimate Std. Error t value Pr(>t)

B - A <= 0 16.9133 2.4754 6.833 < 0.001 ***

C - A <= 0 -0.9983 2.4754 -0.403 0.87049

D - A <= 0 9.4067 2.4754 3.800 0.00147 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Adjusted p values reported -- single-step method)

> plot(confint(mcmp), col = "purple")

The confidence intervals lead to the conclusion that variety A is significantly better in
yield with an error probability of 5% than the varieties B and D. The new variety would
probably not be accepted for registration because it is not significantly better than variety
C.

11.2.8 Elementary Calculation of p-values According to Holm

The local p-values (p raw) are adjusted as follows:

Bonferroni: The raw p-value is multiplied with the number of comparisons.

Bonferroni-Holm: The raw p-values are sorted by increasing size. The first p-value
is multiplied with the full number z of comparisons. If this p-value is significant, the next
one is multiplied with z-1 et cetera. The procedure stops when a p-value has not been
significant (Holm, 1979).

Table 11.2 shows the calculation exemplarily for the melon test problem.

11.2.8.1 Implementation in R

Adjusting p-values according to several methods is implemented in the function p.adjust():
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Figure 11.5: One-sided confidence intervals for a Dunnett test of the melon data.

Hypoth. praw pBonf pBonf−Holm Sign.

B - A 0.000 0.000*3 = 0 0.000*3 = 0 yes/yes
D - A 0.001 0.001*3 = 0.003 0.001*2 = 0.002 yes/yes
C - A 0.654 0.654*3 ⇒ 1 0.654*1 = 0.654,

Stop
no/no

Table 11.2: Elementary p-value adjustment according to Bonferroni and Bonferroni-
Holm.

p.adjust(raw.p.vector, method = "holm", "hochberg", "hommel",

"bonferroni", "BH", "BY", "fdr", "none")

> raw.p.values <- c(0, 0.001, 0.654)

> bonf.p.values <- p.adjust(raw.p.values, method = "bonferroni")

> bonf.p.values

[1] 0.000 0.003 1.000

> holm.p.values <- p.adjust(raw.p.values, method = "holm")

> holm.p.values

[1] 0.000 0.002 0.654
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. Exercise 12

The humidity in four soil types was measured for ten samples respectively (table 11.3)
(Mead et al., 2003, p. 62).

Soil A Soil B Soil C Soil D

12.8 8.1 9.8 16.4
13.4 10.3 10.6 8.2
11.2 4.2 9.1 15.1
11.6 7.8 4.3 10.4
9.4 5.6 11.2 7.8
10.3 8.1 11.6 9.2
14.1 12.7 8.3 12.6
11.9 6.8 8.9 11.0
10.5 6.9 9.2 8.0
10.4 6.4 6.4 9.8

Table 11.3: Humidity content of four different soil types.

Is this dataset suiting for the analysis with a MCP? Which procedure do you choose?
Which are the hypotheses? Implement the test and plot the confidence intervals. Inter-
pret the output!
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Summary

This manual was written to help students of introductory biostatistics courses in under-
standing and using R as a tool for the evaluation of scientific experiments.

Amoung hundreds of functions in R, a couple of very helpful functions have been chosen
and explained in detail. Real data sets keep up with the practical, horticultural basis.
Parametric and non-paramentric two sample tests, correlation, linear regression, ANOVA
and Multiple Comparison Tests have been discussed.

The R-Manual is prepared for extensions. All document sources are available and ap-
pendix C gives usage instructions.
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Appendix A

Answers to Exercises

- Answer 1

1. > a <- 12

> b <- 7

> result.2.binom <- (a-b)^2

> result.2.binom

[1] 25

2. > zahlenkette <- (28:-34)

> zahlenkette

[1] 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14

[16] 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1

[31] -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16

[46] -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -31

[61] -32 -33 -34

3. > ?objects()

On Windows, the help window is closed as usual. On Linux, you have to type q to
return to the command line.

> objects()

[1] "a" "b" "result.2.binom"

[4] "zahlenkette"

> rm(object = a)

> sunflowers <- data.frame(solution = rep(c("complete","l.Mg","l.N","l.mn"),

+ each = 3), dry.weight = c(1172,750,784,67,95,59,148,234,92,297,243,263))

> sunflowers

solution dry.weight

1 complete 1172

2 complete 750

3 complete 784

4 l.Mg 67

5 l.Mg 95
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6 l.Mg 59

7 l.N 148

8 l.N 234

9 l.N 92

10 l.mn 297

11 l.mn 243

12 l.mn 263

- Answer 2

> salad <- data.frame(weight = c(3.06, 2.78, 2.87, 3.52, 3.81, 3.60, 3.3,

+ 2.77, 3.62, 1.31, 1.17, 1.72, 1.20, 1.55, 1.53), group = c(rep(c("bowl"),

+ times = 9), rep(c("bibb"), times = 6)))

> tapply(X = salad$weight, INDEX = salad$group, FUN = mean)

bibb bowl

1.413333 3.258889

> tapply(X = salad$weight, INDEX = salad$group, FUN = sd)

bibb bowl

0.2198788 0.3999201

> tapply(X = salad$weight, INDEX = salad$group, FUN = median)

bibb bowl

1.42 3.30

> tapply(X = salad$weight, INDEX = salad$group, FUN = var)

bibb bowl

0.04834667 0.15993611

> tapply(X = salad$weight, INDEX = salad$group, FUN = min)

bibb bowl

1.17 2.77

> tapply(X = salad$weight, INDEX = salad$group, FUN = max)

bibb bowl

1.72 3.81

> tapply(X = salad$weight, INDEX = salad$group, FUN = quantile)

$bibb

0% 25% 50% 75% 100%

1.1700 1.2275 1.4200 1.5450 1.7200

$bowl

0% 25% 50% 75% 100%

2.77 2.87 3.30 3.60 3.81
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> tapply(X = salad$weight, INDEX = salad$group, FUN = sum)

bibb bowl

8.48 29.33

> tapply(X = salad$weight, INDEX = salad$group, FUN = IQR)

bibb bowl

0.3175 0.7300

- Answer 3

Boxplot figure A.1:

> boxplot(formula = weight~group, data = salad, col = "white",

+ main = "Dry Weight of Lettuce Varieties", ylab = "dry weight (g)")
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Figure A.1: Boxplots showing the leaf dry weight of two lettuce varieties.

- Answer 4

The additive effect on the plants is unknown. Two-sided hypotheses:

H0 : µstandard = µadditiv

H1 : µstandard 6= µadditiv
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> strawberry<- read.table(file = "../text/strawberry.txt", sep = "\t",

+ header = TRUE)

Boxplots for the determination of normal distribution (figure A.2):
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Figure A.2: Boxplots for the yield of strawberries with and without an additive fighting
small white worms.

> boxplot(formula = yield ~ treatment, data = strawberry, col = "white",

+ ylab = "yield")

Normal distribution is assumed.

F-test to verify homogeneity in variances:

> var.test(formula = yield ~ treatment, data = strawberry)

F test to compare two variances

data: yield by treatment

F = 1, num df = 4, denom df = 4, p-value = 1

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:

0.1041175 9.6045299

sample estimates:

ratio of variances

1
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Variances to not differ significantly.

Data is suiting for an analysis with a classical t-test.

> t.test(formula = yield ~ treatment, data = strawberry,

+ alternative = "two.sided", var.equal = TRUE)

Two Sample t-test

data: yield by treatment

t = 0, df = 8, p-value = 1

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-19.86379 19.86379

sample estimates:

mean in group additiv mean in group standard

93 93

To a confidence level of 95%, there is no significant difference. The very high p-value
might rather be used as an indicator for equality which is a success for this experiment
(looking for no effect on the strawberry plants).

- Answer 5

Two-sided test (because no tendency is expected):

H0 : µbowl¬µbibb
H1 : µbowl 6= µbibb

> read.table(file = "../text/lettuce.txt", sep = "\t", header = TRUE)

variety weight

1 bowl 3.06

2 bowl 2.78

3 bowl 2.87

4 bowl 3.52

5 bowl 3.81

6 bowl 3.60

7 bowl 3.30

8 bowl 2.77

9 bowl 3.62

10 bibb 1.31

11 bibb 1.17

12 bibb 1.72

13 bibb 1.20

14 bibb 1.55

15 bibb 1.53

Figure A.3 shows the boxplots:

> boxplot(formula = weight~variety, data = lettuce, col = "white")
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Figure A.3: Boxplots for the dry weight of two lettuce varieties’ leaves.

4 Approximate normal distribution (figure A.3).

4 Boxes are different in length (figure A.3), therefore heterogeneity in variances is
concluded.

4 Independent data.

=⇒ t-Welch test.

> t.test(formula = weight~variety, data = lettuce)

Welch Two Sample t-test

data: weight by variety

t = -11.484, df = 12.716, p-value = 4.422e-08

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-2.193542 -1.497569

sample estimates:

mean in group bibb mean in group bowl

1.413333 3.258889

The lettuce varieties differ significantly in dry weight with an error probability of 5%.
According to the confidence interval, leaves of the variety Bibb are at least 1.4 up to 2.1
g lighter than leaves of the variety Bowl.
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- Answer 6

Boxplots are shown in figure A.4:

> light <- read.table(file = "../text/light.txt", sep = "\t", header = TRUE)

> boxplot(formula = height~color, data = light, col = "white",

+ ylab = "height in inches", main ="Effect of Light on Soybeans")

> var.test(formula = height~color, data = light)

F test to compare two variances

data: height by color

F = 1.4026, num df = 24, denom df = 16, p-value = 0.4892

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:

0.5342844 3.3809995

sample estimates:

ratio of variances

1.402585
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Figure A.4: Boxplots showing the effect of two different light colors on the growth of
soybean plants.

4 Unknown distribution (data is not normal distributed due to outliers and an asym-
metric median in figure A.4).

4 Homogeneity of variances is critical. F-test does not detect a heterogeneity.
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4 Continuous data (height measured in inches).

=⇒ Two-sided Wilcoxon Rank Sum Test, usage of wilcox.exact() due to ties.

H0 : Fred(y) = Fgreen(y)

H1 : Fred(y) 6= Fgreen(y)

> library(exactRankTests)

> wilcox.exact(formula = height~color, data = light,

+ alternative = "two.sided", correct = FALSE, exact = TRUE)

Exact Wilcoxon rank sum test

data: height by color

W = 272, p-value = 0.1296

alternative hypothesis: true mu is not equal to 0

Soybean plants treated with red light differ significantly in height from plants treated
with green light with an error probability of 10%.

- Answer 7

χ2 Goodness-of-Fit Test according to Pearson (number of observations greater than 20).

> flax <- c(15,26,15,0,8,8)

> genetic.model <- c(3,6,3,1,2,1)/16

> chisq.test(x = flax, p = genetic.model)

Chi-squared test for given probabilities

data: flax

X-squared = 7.7037, df = 5, p-value = 0.1733

The observed distribution does not differ significantly from the expected distribution to
a confidence level of 90%. H0 is not rejected.

- Answer 8

χ2 Homogeneity Test according to Pearson (number of observation greater than 20).

> biotope <- matrix(c(25,25,75,75), ncol = 2)

> chisq.test(biotope, correct = FALSE)

Pearson's Chi-squared test

data: biotope

X-squared = 0, df = 1, p-value = 1

H0 is not rejected. No significant differences in the percentage distribution of species A
dependent on species B could be detected. The species are therefore not associated.
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- Answer 9

Scatterplot is shown in figure A.5, boxplots in figures A.6 and A.7:

> ascorbic.acid <- read.table(file = "../text/ascorbic.txt", sep = "\t",

+ header = TRUE)

> plot(acid~response, data = ascorbic.acid, col = "black",

+ xlab = "Ascorbic acid concentration (mug/cm^3)", ylab = "response",

+ main = "Photometric Data")

> boxplot(x = ascorbic.acid$acid, col = "green3",

+ ylab = "concentration (mug/cm^3)", main = "Boxplot of Acid Concentration")

> boxplot(ascorbic.acid$response, col = "green3", main = "Photometer Response")
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Figure A.5: Scatterplot of photometric data for the ascorbic acid content.

The scatterplot (figure A.5) takes us to the expectation of a negative correlation coeffi-
cient. Figures A.6 and A.7 show the normal distribution of both variables. Therefore, a
correlation according to Pearson with a one-sided seceding test is calculated.

> cor.test(formula = ~acid+response, data = ascorbic.acid, method = "pearson",

+ alternative = "less")

Pearson's product-moment correlation

data: acid and response

t = -33.599, df = 4, p-value = 2.34e-06

alternative hypothesis: true correlation is less than 0
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Figure A.6: Boxplot of ascorbic acid concentration for determination of the normal dis-
tribution.

95 percent confidence interval:

-1.0000000 -0.9882535

sample estimates:

cor

-0.9982331

The coefficient of -0.998233 shows an almost perfect correlation. The small p-value verifies
the significance to a confidence level of 95%.

- Answer 10

The Scatterplot is shown in figure A.8:

> sulphur <- read.table(file = "../text/sulphur.txt", sep = "\t",

+ header = TRUE)

> plot(scab~concentration, data = sulphur, col = "black",

+ xlab = "sulphur (pounds/acre)", ylab = "percentage scab damage",

+ main = "Scab Treatment with Sulphur")

> scabmodel <- lm(formula = scab~concentration, data = sulphur)

> abline(reg = scabmodel, col = "black")

The following functions visualize the residuals in figure A.9. They are accepted as normal
distributed and homogeneous in variances:
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Figure A.7: Boxplot of photometric response data for determination of normal distribu-
tion.

> fitted.values <- fitted(object = scabmodel)

> resid.values <- resid(object = scabmodel)

> plot(x = fitted.values, y = resid.values, col = "black")

> abline(h = 0, col = "black")

4 The Number of predictor levels is greater than two.

4 The Number of observations over all x-values is greater than three.

4 Homogeneity of variances of residuals (figure A.9)

4 Normal distribution of residuals (figure A.9)

=⇒ Data is fitting for a regression with scabmodel.

> summary(object = scabmodel)

Call:

lm(formula = scab ~ concentration, data = sulphur)

Residuals:

Min 1Q Median 3Q Max

-12.9571 -2.9286 -0.5429 4.9000 9.1000

Coefficients:
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Figure A.8: Scatterplot of potato scab data.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 20.90000 2.44048 8.564 6.14e-07 ***

concentration -0.01314 0.00355 -3.702 0.00237 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.301 on 14 degrees of freedom

Multiple R-squared: 0.4946, Adjusted R-squared: 0.4586

F-statistic: 13.7 on 1 and 14 DF, p-value: 0.002369

The equation for the straight line is:

y = 20.9− 0.01314x

The intercept as well as the slope are highly significant.

The following commands plot confidence and prediction bands (figure A.10):

> pp <- predict(object = scabmodel, interval = "prediction",

+ data = sulphur$concentration)

> pc <- predict(object = scabmodel, interval = "confidence",

+ data = sulphur$concentration)

> plot(x = sulphur$concentration, y = sulphur$scab,

+ ylim = range(sulphur$scab, pc), col = "black",

+ xlab = "application (pounds/acre)", ylab = "percentage scab damage",

+ main = "Confidence and Prediction Bands")
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Figure A.9: Residual plot of potato scab data.

> matlines(x = sulphur$concentration, pp, tly = c(1,3), col = "magenta3")

> matlines(x = sulphur$concentration, pc, tly = c(1,2,3), col = "steelblue")

- Answer 11

> cherry <- read.table(file = "../text/cherry.txt", sep = "\t", header = TRUE)

> cherry.model <- lm(formula = response~treatment, data = cherry)

Residual plot (figure A.11):

> fitted.values <- fitted(object = cherry.model)

> resid.values <- resid(object = cherry.model)

> plot(x = fitted.values, y = resid.values, col = "black")

> abline(h = 0, col = "black")

Levene test for homogeneity of variances between the groups:

> library(car)

> lev <- data.frame(res = resid.values, group = cherry$treatment)

> attach(lev)

> leveneTest(y = res, group = group)

Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)
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Figure A.10: Confidence and prediction bands for scabmodel.

group 3 14.912 0.0002376 ***

12

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> detach(lev)

4 Homogeneity of variances is accepted due to the levene test result.

4 Normal distribution of residuals is critical, I assume robustness.

4 Independent data.

=⇒ ANOVA. Hypotheses:

H0: µcontrol = µtopµbottomµboth
H1: ∃ at least one µlocation 6= µlocation′

> anova(object = cherry.model)

Analysis of Variance Table

Response: response

Df Sum Sq Mean Sq F value Pr(>F)

treatment 3 16278.2 5426.1 53.801 3.124e-07 ***

Residuals 12 1210.3 100.9

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Figure A.11: Residual plot of cherry.model.

There exists at least one significant difference in transpiration for the different treatments
(to a confidence level of 95%).

- Answer 12

The boxplots are shown in figure A.12:

> soil <- read.table(file = "../text/soil.txt", sep = "\t", header = TRUE)

> boxplot(formula = moisture~treatment, data = soil, col = "white",

+ ylab = "moisture", main = "Soil Moisture in Different Plots")

> library(car)

> leveneTest(y = soil$moisture, group = soil$treatment)

Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)

group 3 0.8003 0.5019

36

4 Approximate normal distribution (figure A.12) is assumed (although there are
outliers).

4 Homogeneity in variances is accepted due to the levene test result.
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Figure A.12: Boxplots for humidity in different soil types.

=⇒ Multiple Comparison Test with Tukey procedure (no control was nominated). Two-
sided hypotheses:

H0: µA = µB = µC = µD

H1: µA 6= µB
µA 6= µC
µA 6= µD
µB 6= µC
µB 6= µD
µC 6= µD

The confidence intervals are plot in figure A.13:

> library(mvtnorm)

> library(multcomp)

> soil.model <- aov(formula = moisture~treatment, data = soil)

> soil.test <- glht(soil.model, linfct = mcp(treatment = "Tukey"))

> summary(soil.test)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = moisture ~ treatment, data = soil)
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Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

B - A == 0 -3.870 1.046 -3.701 0.00389 **

C - A == 0 -2.620 1.046 -2.506 0.07587 .

D - A == 0 -0.710 1.046 -0.679 0.90438

C - B == 0 1.250 1.046 1.195 0.63365

D - B == 0 3.160 1.046 3.022 0.02272 *

D - C == 0 1.910 1.046 1.827 0.27793

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Adjusted p values reported -- single-step method)

> plot(confint(soil.test), col = "purple")
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Figure A.13: Confidence intervals about humidity in different soil types.

With an error probability of 5%, the soil types A and B as well as D and B differ
significantly in humidity.

Figure A.13 shows that the humidity in soil D is higher than in C and that the humidity
in A is higher than in B.
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Cress Data

Light Block Height Light Block Height Light Block Height

red A 2,1 SON-T A 2,5 blue A 2,15

red A 2,2 SON-T A 2,6 blue A 2,4

red A 2,7 SON-T A 2,5 blue A 2,15

red A 1,85 SON-T A 2,6 blue A 2

red A 2,4 SON-T A 2,25 blue A 2,1

red A 2,2 SON-T A 2,6 blue A 2,1

red A 2,55 SON-T A 2,75 blue A 2,35

red A 2,55 SON-T A 2,7 blue A 1,95

red A 2,6 SON-T A 2,5 blue A 2,2

red A 3,05 SON-T A 3,2 blue A 2,4

red A 2,45 SON-T A 2,1 blue A 2,1

red A 2,75 SON-T A 3,15 blue A 2,2

red A 2,55 SON-T A 2,55 blue A 2,1

red A 2,65 SON-T A 2,75 blue A 2,45

red A 2,6 SON-T A 1,85 blue A 2

red B 2,2 SON-T B 2,95 blue B 1,95

red B 2,5 SON-T B 3,4 blue B 2

red B 2,4 SON-T B 2,35 blue B 2,3

red B 2,95 SON-T B 3,1 blue B 1,8

red B 2,8 SON-T B 3,25 blue B 2,5

red B 3,2 SON-T B 2,9 blue B 2,4

red B 2,25 SON-T B 2,6 blue B 2,1

red B 2,7 SON-T B 2,45 blue B 2,15

red B 2,4 SON-T B 2,95 blue B 2,3

red B 2,35 SON-T B 3,05 blue B 2,5

red B 2,6 SON-T B 3,5 blue B 2,1

red B 2,8 SON-T B 3,4 blue B 2,3

red B 2,1 SON-T B 2,7 blue B 2,35

red B 2,75 SON-T B 2,9 blue B 2,3

red B 2,3 SON-T B 2,5 blue B 1,95

red C 2,5 SON-T C 2,4 blue C 2,05

red C 2,9 SON-T C 2,6 blue C 2,35

red C 2,8 SON-T C 3,15 blue C 2,1
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red C 2,5 SON-T C 2,6 blue C 2,1

red C 2,7 SON-T C 2,7 blue C 1,75

red C 3,05 SON-T C 2,8 blue C 1,95

red C 2,5 SON-T C 2,7 blue C 2,35

red C 2 SON-T C 3,35 blue C 2,2

red C 2,7 SON-T C 2,4 blue C 2,6

red C 2,7 SON-T C 2,8 blue C 1,65

red C 2,8 SON-T C 2,85 blue C 1,75

red C 2,6 SON-T C 2,5 blue C 2,2

red C 2,9 SON-T C 2,9 blue C 2,1

red C 3,1 SON-T C 2,7 blue C 1,9

red C 2,5 SON-T C 2,8 blue C 2,25

daylight A 2,5 white A 2,5 green A 2,55

daylight A 2,4 white A 2,8 green A 2,35

daylight A 2,3 white A 2,2 green A 2,8

daylight A 2,15 white A 3 green A 2,55

daylight A 1,6 white A 2,7 green A 2,9

daylight A 2,35 white A 2,7 green A 2,4

daylight A 1,95 white A 2,75 green A 2,3

daylight A 2,5 white A 2,7 green A 2,75

daylight A 2,7 white A 2,35 green A 3,1

daylight A 2,75 white A 2,8 green A 2,9

daylight A 2,6 white A 2,5 green A 2,8

daylight A 2,8 white A 2,8 green A 2,75

daylight A 2,4 white A 3,4 green A 2,5

daylight A 2,15 white A 3,3 green A 2,4

daylight A 2,25 white A 2,55 green A 3

daylight B 2,4 white B 2,65 green B 2,5

daylight B 2,55 white B 2,2 green B 2,7

daylight B 2,3 white B 2,7 green B 3,2

daylight B 2,9 white B 2,2 green B 2,9

daylight B 2,75 white B 2,5 green B 2,6

daylight B 2,85 white B 2,5 green B 3,4

daylight B 2,3 white B 1,5 green B 3

daylight B 2,85 white B 2,25 green B 2,2

daylight B 2,2 white B 2,15 green B 2,5

daylight B 2,45 white B 2,5 green B 2,15

daylight B 2,2 white B 1,85 green B 2,8

daylight B 2,55 white B 3 green B 2,8

daylight B 2,3 white B 2,2 green B 2,8

daylight B 2,3 white B 2,1 green B 2,75

daylight B 2,2 white B 2,7 green B 3,2

daylight C 2,55 white C 3 green C 2,95

daylight C 2,45 white C 2,95 green C 2,9

daylight C 2,35 white C 2,25 green C 2,6

daylight C 2,35 white C 2,95 green C 3,2

daylight C 2,7 white C 2,7 green C 2,8

daylight C 2,6 white C 2,7 green C 2,8
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daylight C 2,1 white C 2,5 green C 2,9

daylight C 2,15 white C 2,3 green C 2,95

daylight C 2,55 white C 2,2 green C 2,75

daylight C 2,45 white C 2,8 green C 2,75

daylight C 2,5 white C 3 green C 2,8

daylight C 2,65 white C 2,5 green C 2,4

daylight C 2,65 white C 2,9 green C 2,6

daylight C 2,65 white C 1,8 green C 2,6

daylight C 2,2 white C 2,45 green C 3,2
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Appendix C

Editing the R-Manual

If you are planning to elaborate on this R-Manual, you should get familiar with the usage
of R and LaTeX first.

This document has been generated by Sweave (R 2.1.1) and pdfLaTeX. It is written
in the unicode-format (utf8). This means you cannot transfer it to Windows easily,
except you find a unicode supporting editor. I strongly recommend you to elaborate
on this document on Linux or another Unix-System. Although there is a tool called
GNU recode (Free Software Foundation Inc., 1998) which is able to transpose utf8 to
Latin-1, you will still have to change all path references inside the different collaborating
documents on Windows - and probably some of the LaTeX libraries, too.

The source of the R-Manual for Biometry is provided in a folder called BSc.

C.1 Structure

The folder BSc has five subdirectories: Bilder, which contains all pictures that are not
automatically generated (Screenshots ect.), excel, which contains all data sets as ∗.xls-
files, Snw files, which contains the source of the document, text, which contains all data
sets as a ∗.txt-files and windows, which contains an R source code file for windows and
the data-set cress.txt (not automatically generated).

Additional obligatory files in the BSc directory are: RHandbuch.tex, RManual English.tex,
boxplot.jpg, danksagung.tex, danksagunge.tex, bibnames.sty, plotbeetmodel.jpg, cress.tex,
khoff.bib, titlebar.jpg, whitebox.jpg and Sweave Linux Howtoe.tex.

RHandbuch.tex and RManual English.tex are the LaTeX master documents that will be
used for pdf-LaTeX Compilation of the R-Manual for Biometry in German and English.
The output files are named RHandbuch.pdf and RManual English.pdf. They will be
found in the same directory by default. This file does not necessarily need to be changed
very much, except you want to use different LaTeX libraries or change the self defined
commands. It might be of help for you to have a look at the commented self-defined
commands in this document to elaborate on the Snw.files.

khoff.bib contains the references for the R-Manual. Include your additional references in
this file to use them with the command citep in the LaTeX environment.

The file boxplot.jpg is a default boxplot picture used in chapter five (t-Test), titlebar.jpg
and the other jpgs are pictures (in the wrong directory) or tools used for formatting
certain parts of the documents manually. danksagung.tex contains my personal thanks
to people who helped developing this manual. Sweave Linux Howto.tex contains this
appendix on how to elaborate on the document.
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C.2. WORKING ENVIRONMENT APPENDIX C. EDITING THE R-MANUAL

Don’t change any other files that might occur in the BSc directory during
Sweave or LaTeX compilation!

C.2 Working Environment

You need to have the texmf LaTeX environment for Linux including pdfLaTeX and ucs
to be installed.

I used the KDE LaTeX editor Kile for editing the source files. You can basically use
any other Linux editor. Kile is convenient regarding the user friendly buttons for LaTeX
compilation and the management of several documents opened at the same time.

In addition, you will need to have R running on your computer.

C.3 Where to Start?

If you decide that you would like to include a new chapter, the first step is to create
a ∗.Snw-file in the BSc/Snw files/ directory. Those source files are named by numbers
(kap1.Snw, kap2.Snw...) but you can choose another name if you like to. The English
file version gehts the identical name except that an ”e” is added on the end.

Note: This newly created file is NOT a LaTeX file. You do not need to include the begin
and end document tags or anything else. It is the R source for a LaTeX chapter of the
R-manual.

Enter a LaTeX chapter tag and start writing your document as if it was a LaTeX file.

C.4 A Short Summary on Sweave

Whenever there occurs a R-source code part you would like to include in your chapter,
use the Sweave tags.

The most simple tag that will provide the entered source code and the result in the
document and does not display pictures is:

<<>>=

R code

@

The option echo = FALSE provides a nice tool if you want to enter source code NOT
displayed in the document (hidden chunks):

<<echo = FALSE>>=

R code

@

For displayed figures, you should set the argument fig = TRUE. You can also combine
this with the echo = FALSE argument if you ONLY want the figure to be displayed:

<<fig = TRUE, echo = FALSE>>=

R code

@
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Please have a look at the Sweave User Manual (Leisch, 2005) for further information on
the usage of Sweave.

C.5 How to Proceed

When you think that you have finished your chapter including all the R-tags you save it
and open R. Set the correct directory by hand the first time:

setwd("/wherever/you/keep/BSc")

In R, you call the ∗.Snw chapter with the command:

Sweave("Snw_files/yourfile.Snw")

Elaborate on your R source code if you get any error messages.

If the source code is correct, R will create a ∗.tex-file in the BSc directory, named the
same as your ∗.Snw-file. It will also create all figures you included in your source code
with fig = TRUE.

The next step is then to open the file RHandbuch.tex/RManual English.tex and edit a
line at the bottom (before end document):

\include{yourfile}

Make sure that you compile all other Snw-files one time before you run pdf-LaTeX on
RHandbuch.tex the first time on your computer. (The *.tex-files and figures need to be
created one time.)

C.6 How to Treat LaTeX Errors

If you get any LaTeX errors while compiling with pdf-LaTeX, go back to your ∗.Snw-file
and do the corrections. Compile the ∗.Snw again with Sweave and THEN run pdf-LaTeX!

I hope you are able to work on the R-Manual with those comments.
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