
Filtering read alignments in BAM format: user guide

Tonatiuh Peña-Centeno

University of Greifswald

March 5, 2012

Abstract

This note documents ”filterBAM”, a program designed to clean alignments stored in
BAM format. The filter is based on filterPSL, a perl script written by Prof. Mario Stanke as
part of the AUGUSTUS software suite Stanke et al. (2008). Both filterPSL and filterBam
are designed for the cleaning of alignment data that will subsequently be applied to the
gene prediction problem. The filter produces also output that might later be used for
transcriptome quantification. The code should be modifiable rather easily, if it is to be
applied to a different type of application. filterBam is written in C++ and makes use of
the Bamtools API of Barnett et al. (2011).

1 Installation

In this section we describe the system requirements for installing, compiling and running
filterBam on a Linux terminal.

1.1 Requirements

Table 1 and 2 below list the software packages and libraries required for compiling filterBam.
As the filter works with sorted BAM files, it might be useful to have both samtools and
bamtools utility kits installed, so both software packages have been included in the tables.

Basic instructions on how to get and use the latest versions of Samtools and Bamtools

are provided in Section 4.

1.2 Compilation

In this section we briefly describe the compilation process of filterBam.

1. Download or checkout the latest version of filterBam from to-specify.

2. Create and export an environment variable BAMTOOLS that points to the folder where
bamtools has been installed. For example, if bamtools is under /home/myAccount/,
then do the following: $BAMTOOLS=/home/myAccount; and then $export BAMTOOLS.

Software Dependencies

Name version Available at
Bamtools 2.1.0 https://github.com/pezmaster31/bamtools

Samtools (optional) 0.1.18 http://samtools.sourceforge.net/

Table 1: List of software required by filterBam

1

to-specify
https://github.com/pezmaster31/bamtools
http://samtools.sourceforge.net/

Library Dependencies

Names version Available at Notes
zlib >= 1.2.2.1 <http://www.zlib.net> For support of BGZF format

Table 2: List of libraries required by filterBam

3. Move to the directory where filterBam has been installed and type make. This should
compile the program filterBam.cc and the source of this document, filterBam.tex.

4. The binary will be stored in filterBam/bin and the documentation in filterBam/doc.

2 A couple of examples

In this section we show how the filter works through the application of a couple of examples.
The first example documents the operation of the filter for single alignments, while the
second example describes the operation of the filter in paired-alignment mode. The filter
accepts a help option to display its funcionalities.

2.1 Dummy data

We have generated two dummy data sets to show filterBam in operation. One file illustrates
how the cleaning of single alignments works, while the other file shows how paired alignments
are processed. The file example single.bam is a BAM file consists of a set of alignments
that were specifically tailored to show the functionalities of the filter when treating inputs
as single alignments. In a similar way, the file example paired.bam was constructed with
alignments that are product of paired-reads, so that the functionalities of the filter under this
mode of operation are shown. Dummy data are stored under the folder filterBam/data.

2.2 Filtering of single alignments

The filter allows screening out alignment under a set of different criteria: coverage level,
percentage of identity and insert gaps, with default values specified in Table 3. Running
the filter on example paired.bam with default options, that is:

> filterBam --in data/example 1.bam --out data/example 1.f.bam

will lead to the following output:

Summary of filtered alignments:

unmapped : 11

percent identity: 5

coverage : 0

Cmd line:

filterBam --in data/example 1.bam --out data/example 1.f.bam

Elapsed time: 0 seconds.

The source file, example 1.bam stores 35 alignments, whereas the filtered output has 19
alignments. As the output shows, 16 alignments were cleaned, 11 because they were not
mapped and 5 because of the percent identity criteria.

2

<http://www.zlib.net>

Parameters of the filter might be modified. A run with minCover= 70 will lead to a very
different output. The options best and uniq are both mutually exclusive, because they make
the filter let pass only alignments that have a minimum thresholding score.

2.3 Filtering of paired alignments

RNA-seq libraries might contain paired-reads, which provide additional information by
means of the distance kept between the end of one read and the start of the other; some-
thing termed as the insert length. In fact, aligners such as Bowtie and GSNAP allow the
alignment of paired reads by simply using both sets of reads as inputs. Nevertheless, sets of
single reads that have been aligned independently might also be used to extract pairedness
information: simply look pairs of alignments that might be potential pair-mates. filterBam
does precisely that, within a single BAM file; for further information on how this is done
see the Section 9.

In order for the filter to work on the paired-alignment mode, the option - -paired〈value〉
must be set. The same set of options are available as with the single-alignment filter.
However, there are subtle differences on the criteria - -best〈value〉 or uniq, which are explained
in Section 9 of the reference manual.

Summary of filtered alignments:

unmapped : 2

percent identity: 0

coverage : 0

not paired : 1

quantiles of unspliced insert lengths: [insertlen.size()=4]

q[10%]=76,q[20%]=76,q[30%]=77,q[40%]=77,q[50%]=137,q[60%]=137,q[70%]=137,q[80%]=138,q[90%]=138,

unique : 2

Cmd line:

./filterBam --in data/example paired.bam --out data/example paired.f.bam

--paired --minId 70 --uniq --uniqThresh 0.99 --verbose

--

Elapsed time: 0 seconds.

In this example, the file example paired.bam originally with 7 alignments is filtered
under the paired alignment mode, and with the options minId= 70 and uniqThresh= 0.99.
Setting these parameters to such values will lead to the filter to discard 5 alignments and
to let pass only 2.

2.4 Common gene information

When using paired alignments, an important source of information might be whether op-
timal alignments were aligned to a common target. The option - -commonGeneFile〈value〉
allows to store such type of information in a text file.

2.5 Pairdness coverage information

For paired alignments, and in fact for paired reads, an important source of information is the
distance kept between reads. When operating in paired-alignment mode, filterBam preserves
the information of pairedness coverage between mate pairs. This feature is activated with
the - -pairBed〈value〉.

3

Warning: At present time, the routine for collecting pairedness coverage information
slows down quite a lot the execution time, so use it your own risk. Nevertheless, a faster
version of this feature should be available relatively soon.

2.6 Other

This software has been tested on a a Dell (x86 64) computer with Ubuntu 10.04 (lucid).
Compilation of the code was done with GNU’s C++ compiler, gcc version 4.4.3.

3 Technical specifications

Other relevant issues that might be well documenting go here.

3.1 Input data

The filter should work fine for data coming from 454 and Illumina technologies but not for
colorspace data generated by SOLiD technology.

4 About Samtools and Bamtools

We introduce some examples of how to use Samtools and Bamtools to make life easier when
working with BAM files. In particular we concentrate on the issue of sorting files by query
name, as this is the requirement for filterBam. Attention should be paid to the fact that
SAM and BAM files contain a header, so any sorting routine must consider the following:
to momentarily put aside the header, do the sorting, and then insert the header at the top
of the sorted file.

4.1 Samtools

Samtools is an API written in the C language that includes a set of utilities for ma-
nipulating SAM/BAM files. The software is available via subversion on the web-page
http://samtools.sourceforge.net/. Folow the installation instructions contained therein
and a binary file samtools will be produced. Some useful commands follow:

• Help samtools --help

• Convert from SAM to BAM
samtools view -bS input.sam -o output.bam

• Convert from BAM to SAM
samtools view -h input.bam > output.sam

• Sort BAM file
samtools sort input.bam out

4.2 Bamtools

In a similary way, Bamtools is an API, but now written in C++, that also includes an
utility-kit to manipulate BAM files. Get hold of the latest version of Bamtools by following
the instructions contained in: https://github.com/pezmaster31/bamtools/wiki/; more
specifically in the section ’Building and installing’. The software git will be required. After
compilation, a binary bin/bamtools will be created. Some useful commands are:

• Help
bamtools --help

4

http://samtools.sourceforge.net/
https://github.com/pezmaster31/bamtools/wiki/

• Count number of alignments in a BAM file
bamtools count -in input.bam

• Sorting files by query name [WARNING: it seems that this sorting does not behave
well with characters s.a. ”:”]
bamtools sort -byname -in input.bam -out output.bam

5

Filtering read alignments in BAM format: reference
manual

Tonatiuh Peña-Centeno
March 5, 2012

Abstract

This note describes the detailed operation of the filter and lists the main
classes that were used to implement it. In this way, people in the future might
improve or reuse the filterBam code for other type of applications.

5 Introduction

RNA-seq data has become an important source of information for tasks such
as differential expression analysis, transcript quantification and gene prediction.
Given that this new technology produces millions of such short-reads (∼ 30bp),
bespoke methods and tools are required to process such big amounts of informa-
tion. For example, a single run of an RNAseq experiment will produce millions,
if not, hundreds of millions of short reads [Ref: Wiki].

After sequencing and generation of an RNAseq dataset, a later step consists
of utilising the short reads to obtain an approximate version of the transcriptome,
typically via the alignment of the reads to a reference genome. Such alignments
can be carried out with tools such as BLAT, Bowtie, GSNAP, among others. In
particular, Bowtie and GSNAP are specifically designed to align reads as short
as 50 and 14 bp, respectively. Very recently, the introduction of the Sequence
AlignMent Format, or SAM, by Li et al. (2009), has meant that many of the
aforementioned alignment tools now produce outputs in SAM format.

filterBam is a C++ code that cleans alignment files stored in BAM format,
which is the binary version of SAM. The software package is based on filterPSL,
a Perl routine written by Prof. Dr. Mario Stanke for the processing of align-
ment records stored in PSL format. filterPSL is part of a set of Perl scripts
that accompany the distribution of the annotation software, AUGUSTUS [Ref].
filterPSL is mainly used as a preprocessing step for cleaning alignments obtained
with softwares such as BLAT, and filterBam is supposed to supersede it by doing
the same task but on RNAseq alignment data stored in a BAM file.

6 Main features

In a nutshell, assuming a BAM file given as input, filterBam by default cleans all
those alignments that are either unmapped or do not satisfy any of the following
conditions:

1. do not comply with a minimum coverage;

2. do not have a minimum value of percentage identitiy, or

3. (optionally), do not satisfy a minimum value of base inserts.

Table 3 above summarises the main features of the filter.
After this basic set of filters has been applied, the alignments are processed

according to whether they originated from single- or paired- RNAseq reads. Sin-
gle alignments are cleaned by droppping out all those that do not satisfy a
score value that depends on the coverage and the percentage identity of the
aligned read, i.e. score(coverage, percId). Paired alignments are mated to other
alignments according to the distance and insert length from their associated
reads; the filter then drops out all those pairs of alignments that do not satisfy

6

filterBam

Action Feature Option Default value

Every alignment

Screens out

unmapped – –
coverage level minCover 80%
pctge identity minId 92%
insert gaps insertLimit 10bp

Single alingments

Screens out
best – nore

unique uniqThresh 0.96

Paired alignments

Screens out
best
uniq uniqThresh 0.96

Writes to file
common target genes commonGeneFile false

pairedness coverage info pairBedFile false

Table 3: Main features of filterBam.

a score value that, once again, depends on coverage and percentage identity,
(score(coverage, percId)).

The subsequent sections of this document describe in a step-wise manner how
the filtering of single- and paired-alignments is done. The basic set of filters is
described in Section 7. Then the filtering of single alignments is explained in
Section 8, and finally the filtering of paired alignments is explained in Section 9.

7 Basic filters

Figure 1 below shows the schematics of the operation of the filter for single align-
ments. In the subsequent, we will assume an input BAM file is constituted by
a series of records i = {1, . . . , N}, each containing the information of an align-
ment. See (Li et al., 2009) for further reference. The filter first checks whether
alignment i is mapped or not, and this is easily done by means of verifying the
bit 0 × 4 of the alignment FLAG (SAM field number 2). As the specification
suggests, this bit is the only source of reliable information to determine whether
a read is mapped or not Li et al. (2009). This verification is achieved by us-
ing the isMapped method of BamTools. Unmapped reads are dropped, while
mapped reads continue further processing. A counter keeps track of the number
of unmapped reads that were dropped.

As a second step, alignments that passed the mapping test are appended
with two additional but temporary string-tags. Tag ‘co’ and tag ‘pi’ are added
to the binary alignment by the addTag method of BamTools. ‘co’ stands for
coverage and is a measure of the amount of reads located at a given genomic
position. ‘pi’ stands for percentage identity and is a measure of the number of
basis that correctly identify a genomic position. Estimation of the coverage is
done according to Equation 2, whilst estimation of the percentage identity is
done following Equation 3, both in the Appendix.

If the estimated coverage value for the read in alignment i is less than that of
the specified minCover, the alignment will be dropped and a counter keeping track
of such types of events will be updated. In a similar way, if the value of percId
for the read of alignment i, is less than that specified by minId, the alignment

7

will be dropped and the corresponding counter will be updated. Default values
for minCover and percId are shown in Table 3 respectively, but might be modified
by using the options - -minCover〈value〉 and - -minId〈value〉.

8 Single alignments

Continuing with Figure ??, we assume either options best or uniq are selected, but
not option paired. The core issue to understand in the operation of the single-
alignment mode filter, is that batches of alignments belonging to a common
query QNAME1 will be processed independently from alignments belonging to
a different query name QNAME2.

Alignments that passed the mapping test are appended with two additional
but temporary string-tags. Tag co and tag pi are added to the binary alignment
by means of the addTag method of BamTools. Tag co stands for coverage and is
a measure of the amount of reads located at a given genomic position. Meanwhile
pi stands for percentage identity and is a measure of the number of basis that
correctly identify a genomic position. Whereas estimation of the coverage is done
according to Equation 2, estimation of the percentage identity is done according
to Equation 3, both in the Appendix. Table 4 below shows a series of alignments
with the co and pi tags added.

If the estimated coverage value of alignment i is less than that of minCover,
the alignment will be dropped and a counter keeping track of such types of drops
will be updated. In a similar way, if the value of percId for alignment i, is less than
that specified by minId, the read will be dropped and the corresponding counter
will be updated. Default values for minCover= 80 and percId= 92 might be
modified by using the options - -minCover〈value〉 and - -minId〈value〉, respectively.

An optional value, the number of inserts to the base reference (baseInsert), is
computed optionally if the ’–noIntrons’ option is used. The number of insertions
to the reference is computed through the application of Equation 4. This filter
depends on the insertLimit value that has been specified, and which by default
has a value of 10. The insertLimit parameter might be modifed by applying the
- -insertLimit〈value〉 option.

8.1 Uniq and Best criteria

Further cleaning can be achieved by means of selecting the mutually exclusive
unique or best options. If such is the case, Figure 1 shows how an alignment
record continues throughout the process path. Options best and unique stand
for the filter selecting the best group of alignments, or the single-top alignment
(i.e. unique), in terms of a cost function, which in this case is given defining the
expression

score = percId + coverage. (1)

Thus, after an alignment has passed through the mapping, coverage, percent-
age identity and intron-gap filters, the information from coverage and percentage
identity is be combined into the figure score. Such value is added to the alignment
as the tag sc.

After a group of alingments belonging to the same query has been scored, the
group is sorted by such score value; as illustrated in Tables 4 and 5 below.

8

Start α

Unmapped? Score alignments

Percentage
identity (percId)

Unique?

percId≥minId? Similarity

Coverage
(coverage)

ratio
(top,second)

coverage
≥

minCover?

Select top
alignment

Select align’s
sharing top score

noIntrons?
baseInsert
< in-

sertLimit?

Save alignments

Unique
|

Best?
Base inserts End

α

no

yes

yes

no

yes

Figure 1: Flow diagram of the operation of the single-read filter

9

QNAME RNAME startPOS endPOS pi co sc
r2/1 chr17 27698729 27698778 98 100 198
r2/1 chr17 20320140 20320189 94 100 194
r2/1 chr19 1364 1413 98 100 198
r2/1 chr17 8038458 8038507 96 100 196
r2/1 chr17 24524223 24524271 94 100 194
r2/1 chr17 30676704 30676750 96 96 192
r2/1 chr17 16894327 16894376 94 100 194
r2/1 chr17 5031882 5031931 96 100 196
r2/1 chr18 0 49 98 100 198

Table 4: SAM alignments with added tags: percId, coverage and score

QNAME RNAME startPOS endPOS pi co sc
r2/1 chr17 27698729 27698778 98 100 198
r2/1 chr19 1364 1413 98 100 198
r2/1 chr18 0 49 98 100 198
r2/1 chr17 8038458 8038507 96 100 196
r2/1 chr17 5031882 5031931 96 100 196
r2/1 chr17 20320140 20320189 94 100 194
r2/1 chr17 24524223 24524271 94 100 194
r2/1 chr17 16894327 16894376 94 100 194
r2/1 chr17 30676704 30676750 96 96 192

Table 5: SAM alignments after sorting by score

10

10085333

rStart

1234

rStart

10085409

rEnd

1325

rEnd
chrX

1401

sEndsStart

1310

chr2R

chrX
6615647

sEndsStart

6615571

Figure 2: The similarity function checks whether mate paired reads are overlapping or not.

The difference between the uniq and best criteria is that the former will select
only the top-scored alignment and will write it into file. Table 5 shows the same
set of alignments as in Table 4, but after ranking by score. According to the
best criterion, only the alignmnents sharing the optimal score will be preserved,
while the rest of suboptimal alignments will be dropped. In the example of Table
5, the alignments sharing the score=198 will be preserved while the rest will be
discarded.

The option uniq is based also on the sorting of alignments by its score. The
main difference however is that only one alignment is preserved, provided that
it is one of those sharing the top score, but also provided that it is is elligible to
be preserved. However, in case a group of alignments happen to share the same
score, filterBam checks whether such alignments are similar; whereby similarity
refers to two reads to have been aligned on overlapping positions.

8.2 Similarity function

A function that tests whether alignments (or two alignment pairs) are similar
has been included within filterBam. Testing for similarity is required given that
by handling separately spliced and unspliced alignments, there is the possibility
that very similar alignments are reported, an unspliced read going approximately

up to an intron and a spliced read with a few base pairs on one exon. Such type
of cases should not be considerd ambiguous when uniq is specified.

Figure 2 below shows two scenarios. In scenario one, a pair of reads were
aligned to overlapping ranges of the reference genome; both reads are deemed
similar. In scenario two, the reads are aligned to non-contiguous ranges of the
reference genome, thus are considered not-similar.

Thus to finalise, a top-scored alignment will be let pass by the filter, if and
only if, the second ranked alignment is not all too-similar to the top alignment.

9 Paired alignments

This section describes the filtering of paired alignments. This feature is enabled
by selecting the option paired. By doing so, filterBam will compare a set of
alignments belonging to a common query and determine which alignments are
paired with which others. Such matching is done by examining the distance and
insert length between candidate pairs. A more thorough explanation follows,
nevertheless it is worth pointing out that before alignments are processed as
paired alignments, they are subjected to the basic filters described in Section

11

Mate 1 Mate 2 Strand 1 Strand 2 dist insLen score
rs1/1 (70) rs1/1 (71) false false – – –
rs1/1 (70) rs1/2 (138) false true 57 77 3.8
rs1/1 (70) rs1/2 (201) false true 120 138 3.875
rs1/1 (70) rs1/2 (499) false false – – –
rs1/1 (71) rs1/2 (138) false true 58 76 3.55
rs1/1 (71) rs1/2 (201) false true 121 137 3.625
rs1/1 (71) rs1/2 (499) false false – – –
rs1/2 (138) rs1/2 (201) true true – – –
rs1/2 (138) rs1/2 (499) true false – – –
rs1/2 (201) rs1/2 (499) true false – – –

Table 6: Candidate mate pairs in the example presented in Section 9

7. A flow chart of the operation of filterBam for paired alignments is shown in
Figure 3 below.

9.1 Mate pairs

Figure 4 shows a diagram in which four reads have been aligned: rs.1 (71), rs.2
(72), rs.2 (139) and rs.1 (202); with starting positions between parentheses. Bare
in mind that query names have been made to coincide, in order to facilitate the
understanding of the matching process. We recall that filterBam accepts inputs
with ’/1’, ’/2’ suffix when the option paired has been selected.

Within a group of alignments, presented in the example as queries rs, filter-
Bam defines a list of candidate mate pairs, as shown in Table X below. If one
pair of alignments belongs to different mates 1,2 and come from different strands
+,-, then their distance and insert-length is computed. If a pair of alignments
has dist ≥ 0 and insLen ≤ maxInsertLimit, the alignments are considered a
valid mate-pair.

9.2 Uniq and Best criteria

Figure 3 shows the flow chart of operation of filterBam for paired alignments.
As it can be seen, the filter operates under very similar tenets to those of the
filter for single alignments, the main difference being that under the paired option,
alignments are processed in pairs. Thus after scoring of the alignments of forming
of the mate-pairs, the uniq selects the top-ranked pair of mates; where the rank
is given by a function that makes use of the coverage and percId in very similar
terms to those of Equation 1. Analogously as well, the option best, lets pass the
set of mate-pairs that share the maximum score. It is important to remark that
alignments that were not paired are dropped.

10 Coverage, percent of identity and insert length

The coverage is computed as the sum of the alignment matches (sequence matches
or mismatches) and the insertions to the reference. Both figures, alignment
matches and insertions to the reference, correspond to CIGAR string operations
M and I, respectively. Thus the following is done

coverage =

∑
CIGAR (M, I)

qLength
(2)

12

Start α

Unmapped? Score alignments

Compute
mate pairs

Percentage
identity (percId)

Unique?

percId≥minId?
Similarity
btwn pairs

Coverage
(coverage)

ratio
(top,second)

coverage
≥

minCover?

Select top
mate-pair

Select mate-pairs
sharing top score

noIntrons?
baseInsert
< in-

sertLimit?

Save alignments
belonging
to selected
mate-pairs

Unique
|

Best?
Base inserts End

α

no

yes

yes

no

yes

Figure 3: Flow diagram of the operation of the single-read filter

13

71 72 80 1390 79 209

rs.1

rs.2

1182

139−80=59; dist=57, inslen=77

202

rs.1

rs.2
202−80=122

139−79=60

202−79=123; dist=121, inslen=137

Figure 4: Paired reads

An approximation to the percentage of identity is given by computing the
query length and subtracting the so-called edit distance to the reference (tag
“NM” in SAM jargon), i.e.

percId =
qLength− Tag(NM)

qLength
(3)

The length of inserts is estimated by summing CIGAR operations “M” and
“I”, which correspond to alingment matches and deletions from the reference. In
other words, we do the following

InsertSize =

∑
CIGAR (D, I)

qLength
(4)

References

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Math,
G. Abecasis, R. Durbin, and . G. P. D. P. Subgroup. The sequence align-
ment/map format and samtools. Bioinformatics Applications Note, 25(16):
2078–2079, 2009.

D. Barnett, E. Garrison, A. Quinlan, M. Strmberg, G. Marth. BamTools: a
C++ API and toolkit for analyzing and managing BAM files. Bioinformatics,
27(12):1691-1692, 2011.

M. Stanke, M. Diekhans, R. Baertsch, D. Haussler. Using native and syn-
tenically mapped cDNA alignments to improve de novo gene finding. doi:
10.1093/bioinformatics/btn013

14

	Installation
	Requirements
	Compilation

	A couple of examples
	Dummy data
	Filtering of single alignments
	Filtering of paired alignments
	Common gene information
	Pairdness coverage information
	Other

	Technical specifications
	Input data

	About Samtools and Bamtools
	Samtools
	Bamtools

	Introduction
	Main features
	Basic filters
	Single alignments
	Uniq and Best criteria
	Similarity function

	Paired alignments
	Mate pairs
	Uniq and Best criteria

	Coverage, percent of identity and insert length

